Deductive Reasoning

Lesson #2

49

Problem

Pick any positive whole number and add 4 to it. Find the sum of the new number and add the original number. Next add 6 to the sum. Divide the new sum by 2. Lastly, subtract the original number from the quotient. What number do you get?

Conjecture

Picking any positive whole number will result in a value of 5.

10 + 4 = 14 14 + 10 = 24 24 + 6 = 30 $30 \div 2 = 15$ 15 - 10 = 5

Problem Revised 10 + 4 = 14Pick any positive whole number and add 4 to it. Find the sum of the new number and add the original number. Next add 6 to the 14 + 10 = 24sum. Divide the new sum by 2. Lastly, subtract the original number from the quotient. What number do you get? 24 + 6 = 30 $30 \div 2 = 15$ Conjecture 15 – 10 = 5 Picking any Real number will result in a value of 5. • What happen if you pick an integer (i.e. a negative whole number)? • What if you pick a rational number (i.e. fractions or decimals)? • What if you pick an irrational number (i.e. π , 1/3, etc...)

Generalizations & Proofs

Generalization

A principle, statement, or idea that has general application

Proof

A mathematical argument shown that a statement is valid in all cases, or that no counterexamples exists.

Famous Math Conjectures

- Fermat's Last Theorem
- Twin Prime Conjecture
- Four color theorem
- Collatz Conjecture
- Beal Conjecture
- Riemann Hypothesis
- Poincaré Conjecture (2003)
- P versus NP Conjecture
- Hodge Conjecture
- Yang–Mills existence and mass gap
- Navier–Stokes existence and smoothness
- Birch and Swinnerton-Dyer Conjecture

INSTITUTE HAS TO OFFER AN EIGHTH PRIZE TO WHOEVER FIGURES OUT WHO THEIR OTHER PRIZES SHOULD GO TO.

 $M(H^{\circ}) = \pi \left(\frac{1}{137}\right)^8 \sqrt{\frac{h_c}{G}}$ **3**987¹² + 4365¹² = 4472¹² n(t.) >1 + (0]- (2 + (

Problem Revisited

Pick any positive whole number and add 4 to it. Find the sum of the new number and add the original number. Next add 6 to the sum. Divide the new sum by 2. Lastly, subtract the original number from the quotient. What number do you get?

Proof

Picking any number 'n' will always result in the value of 5.

n + 4 = n + 4(n + 4) + n = 2n + 4 (2n + 4) + 6 = 2n + 10 (2n + 10) ÷ 2 = n + 5 n + 5 - n = 5

For Example: 2
3
5
8
13
21
34
11 x 55
89
144
233
605

Prove

The sum of 3 consecutive integers is a multiple of 3?

Activity

Create your own 'magical' system to create any number of your choice regardless of the starting number chosen.

System must consist of at least 5 steps and include an assortment of mathematical operations.

Provide 3 samples of evidence to validate your system and a deductive proof.

65

Inductive vs. DeductiveDeductive• Certainty• Guaranteed Conclusion• ProofReasoning• Categorical Reasoning• Truth-Functional Reasoning• Explanatory Reasoning

Questions	
Section 1.4, Page 32-33	Also:
#'s 7, 9 & 19	Create your own 'magical' system to create any number of your choice regardless of the starting number
Section 1.5, Page 43-44	chosen.
#'s 5, 6, 7 & 10	System must consist of at least 5 steps and include an assortment of mathematical operations.
Section 1.6, Page 49	Provide 3 samples of evidence to
# 4	validate your system and a deductive proof.