We know that to generate a sequence you need:

- A set pattern
- A starting value (a)

We will focus our study on the arithmetic sequence
It has a first term ' a ' and a common difference ' d '
To get to the $9^{\text {th }}$ term you add 8 differences, to get to the $40^{\text {th }}$ add 39 differences
Formula: the $\boldsymbol{n}^{\text {th }}$ term of an arithmetic sequence is given by: $\quad t_{n}=a+(n-1) d$

1) Given $3,7,11, \ldots$
a) create t_{n}
$a=3, d=4$
$t_{n}=3+(n-1) 4$
b) find t_{253}
we now know $n=253$
$t_{253}=3+(253-1) 4 \quad t_{101}=1011$
2) Given 13, 28.6, 40.2 ...
a) find t_{356}

$$
a=13, d=28.6-13
$$

$t_{n}=13+(n-1)(15.6)$
$t_{356}=13+(356-1)(15.6) \quad t_{356}=5551$
b) Is 10262.2 in this sequence?
if it is $n=$ whole \#
$10262.2=13+(n-1)(15.6)$
$10249.2=(n-1)(15.6) \quad 657=n-1$
$n=658$ so YES in sequence
3) Given $96,82.6,69.2$....
a) find t_{306}
b) Which term is -11649.1?
$a=96 d=82.6-98$
$t_{n}=96+(n-1)(-13.4)$
$t_{306}=96+(306-1)(-13.4)$
$t_{306}=-3991$

$$
\begin{aligned}
& -11649.1=96+(n-1)(-13.4) \\
& -11745.1=(n-1)(-13.4) \quad 876.5=n-1 \\
& n=877.5 \text { THIS TERM Does not exist }
\end{aligned}
$$

4) Given $50.4,41.7,33$, ...
a) Find t_{58}

$$
a=50.4, d=41.7-50.4
$$

$t_{n}=50.4+(n-1)(-8.7)$
$t_{58}=50.4+(58-1)(-8.7)$
b) Which term is -419.4?

$$
\begin{aligned}
-419.4 & =50.4+(n-1)(-8.7) \\
-469.8 & =(n-1)(-8.7) \\
n & =55 \ldots \text { the } 55^{\text {th }} \text { term }
\end{aligned}
$$

Math 10 Arithmetic Sequences (Day 2 Worksheet)

1) Create an arithmetic sequence formula and use it to find the indicated term
a) $6,8,10, \ldots$.
b) $12,16,20, \ldots$.
c) $\quad 9,16,23, \ldots$
$t_{n}=$
$t_{n}=$
$t_{n}=$
Find $\quad t_{40}=$
Find $\quad t_{17}=$
Find $\quad t_{15}=$
Find $t_{125}=$
Find $\quad t_{112}=$
Find $\quad t_{88}=$
d) $-10,-7,-4, \ldots$
e) $-4,-9,-14, \ldots$
$t_{n}=$
$t_{n}=$

Find $t_{22}=$	Find $t_{33}=$	Find $t_{44}=$
Find $t_{99}=$	Find $t_{314}=$	Find $t_{745}=$
g) $7,20,33 \ldots$	h) $100,88,76, \ldots$.	i)
$t_{n}=$		$t_{n}=$

Find $\quad t_{12}=$

Find $\quad t_{67}=$
j) $\quad 5.6,12,18.4$....
$t_{n}=$

Find $\quad t_{12}=$

Find $\quad t_{67}=$

Find $\quad t_{17}=$

Find $\quad t_{116}=$
k) $94.7,94,93.3, \ldots$.
$t_{n}=$

Find $\quad t_{31}=$

Find $\quad t_{166}=$

Find $t_{44}=$

Find $t_{745}=$
I) $\pi+5, \pi+9, \pi+13 \ldots$
$t_{n}=$

Find $\quad t_{44}=$
2) Given 7, 23, 39
a) $t_{n}=$
b) $\quad t_{64}=$
c) Is 1975 in this sequence?
3) Given 15, 21.5, 28
a) $\quad t_{n}=$
b) $\quad t_{42}=$
c) Is $\mathbf{5 7 7}$ in this sequence?
4) Given 99, 85, 71
a) $\quad t_{n}=$
b) $\quad \mathrm{t}_{21}=$
c) Is -818 in this sequence?
5) Given 245, 239, 233
a) $\quad t_{n}=$
b) $\quad t_{121}=$
c) Is -949 in this sequence?
6) Given 94.5, 103.2, 111.9 ...
a) $\quad t_{n}=$
b) $\quad \mathrm{t}_{88}=$
c) Is 4061.7 in this sequence?
7) If you graphed the terms of an arithmetic sequence on a graph of $t_{n} v s n$ the graph would form a straight line. Would you connect the dots on this graph? Why or Why not?
8) In 1988 Calgary hosted the Olympic winter games - these games occur every 4 years. Will there be winter Olympics in
a) 2052?
b) 2070?
c) 2168 ?

