What is a sequence?

- A pattern that a set of numbers follows (determined by a set formula)

Notation: $\quad t_{n}=$ the $n^{\text {th }}$ term of the sequence.

1) Given $t_{n}=3 n^{2}-5 n$, find
a) t_{7}
$n=7 \quad t_{7}=3(7)^{2}-5(7)$
$=112$
b) t_{12} $n=12$

$$
\begin{gathered}
t_{12}=3(12)^{2}-5(12) \\
=372
\end{gathered}
$$

Some sequence follow +/- by a set common value and start from a first term called a (these are called arithmetic sequences)
2) Given $t_{n}=8 n-11$
a) sub in 1 to find a
b) sub in $\mathbf{2}$ to find t_{2}
c) find t_{52}
$t_{1}=8(1)-11 \quad t_{1}=-3$
$t_{2}=8(2)-11 \quad t_{2}=5$
$t_{52}=8(52)-11 \quad t_{52}=40$
so, $\quad d=8$
3) Given $t_{n}=18-7.2 n$
a) sub in 1 to find a
b) sub in 2 to find t_{2}
c) find t_{33}
$t_{1}=18-7.2(1) \quad t_{1}=10.8 \quad t_{2}=18-7.2(2) \quad t_{2}=3.6 \quad t_{33}=18-7.2(33) \quad t_{33}=-219.6$
so, $\quad d=7.2$
Some sequence follow x / \div by a set common ratio and start from a first term called a (these are called geometric sequences)
4) Given $t_{n}=15(1 / 2)^{n}$
a) sub in 1 to find a
b) sub in $\mathbf{2}$ to find t_{2}
c) find t_{7}
$t_{1}=15(1 / 2)^{1} \quad t_{1}=7.5$
$t_{2}=15(1 / 2)^{2} \quad t_{2}=3.75$
$t_{7}=15(1 / 2)^{7} \quad t_{7}=0.1171875$
so, $r=1 / 2$
5) Given $t_{n}=60(-2)^{n-2}$
a) sub in 1 to find a
b) sub in $\mathbf{2}$ to find t_{2}
c) find t_{9}
$t_{1}=60(-2)^{1-2} \quad t_{1}=-30$
$t_{2}=60(-2)^{2-2} \quad t_{2}=60$
$t_{9}=60(-2)^{9-2} \quad t_{9}=-7680$
so, $r=-2$

Some sequences use previous terms to generate the next term
(this is called a recursive sequence)
6) Given $t_{n}=8 t_{n-1}-3$ and $t_{1}=4$

Find t_{2}, t_{3}, t_{4}

To find $t_{2}, n=2 \quad \rightarrow \quad t_{2}=8 t_{2-1}-3$

To find $t_{3}, n=3 \quad \rightarrow \quad t_{3}=8 t_{3-1}-3$
or $t_{3}=8 t_{2}-3$ but $t_{2}=29$
$t_{3}=8(29)-3 \quad t_{3}=229$
To find $t_{4}, n=4 \quad \rightarrow \quad t_{4}=8 t_{4-1}-3$
or $t_{4}=8 t_{3}-3$ but $t_{3}=229$

$$
t_{4}=8(229)-3 \quad t_{4}=1829
$$

The Fibonacci Sequence $t_{n}=t_{n-1}+t_{n-2}$
$t_{1}=t_{2}=1$
Find t_{3}, t_{4}, t_{5}

To find $t_{3}, n=3$	\rightarrow	$t_{3}=t_{3-1}+t_{3-2}$	or	$t_{3}=t_{2}+t_{1}$	but $t_{1}=t_{2}=1$	
					$t_{3}=1+1$	$t_{3}=2$
To find $t_{4,} n=4$	\rightarrow	$t_{4}=t_{4-1}+t_{4-2}$	or	$t_{4}=t_{3}+t_{2}$	but $t_{2}=1, t_{3}=2$	
					$t_{4}=2+1$	$t_{4}=3$
To find $t_{5}, n=5$	\rightarrow	$t_{5}=t_{5-1}+t_{5-2}$	or	$t_{5}=t_{4}+t_{3}$	but $t_{2}=2, t_{4}=3$	
					$t_{5}=3+2$	$t_{5}=5$

To continue the pattern: $1,1,2,3,5,8,13,21, \ldots$

These numbers model tree growth

And create the golden spiral

Assignment $=$ worksheet

Math 10 Sequences (Day 1 Worksheet)

1) Use the provided formula to state the first 4 terms of sequence
a) $t_{n}=4 n-3$
b) $t_{n}=5 n+2$
c) $\quad t_{n}=n^{2}-1$
$\mathrm{t}_{1}=$
$\mathrm{t}_{2}=$
$\mathrm{t}_{1}=$
$\mathrm{t}_{1}=$
$\mathrm{t}_{2}=$
$\mathrm{t}_{2}=$
$\mathrm{t}_{3}=$
$\mathrm{t}_{3}=$
$\mathrm{t}_{3}=$
$\mathrm{t}_{4}=$
$\mathrm{t}_{4}=$
e) $\quad t_{n}=2^{n}+1$
f) $\quad t_{n}=\frac{n-4}{n+3}$
d) $t_{n}=5-9 n$
$\mathrm{t}_{1}=$
$\mathrm{t}_{1}=$
$\mathrm{t}_{1}=$
$\mathrm{t}_{2}=$
$\mathrm{t}_{2}=$
$\mathrm{t}_{2}=$
$t_{3}=$
$\mathrm{t}_{3}=$
$\mathrm{t}_{3}=$
$\mathrm{t}_{4}=$
$\mathrm{t}_{4}=$
$\mathrm{t}_{4}=$
2) Looking back at the questions you just answered - which sequences would be Arithmetic?
(Circle your choices)
A
B
C
D E
F
3) Fill in the blanks and find the indicated terms of the arithmetic sequences below
a) If $t_{n}=7 n+3$
$\mathrm{a}=$ \qquad $\mathrm{d}=$ \qquad $\mathrm{t}_{18}=$ \qquad $\mathrm{t}_{101}=$ \qquad
b) If $t_{n}=5-9 n \quad \mathrm{a}=$ \qquad $d=$ \qquad $\mathrm{t}_{58}=$ \qquad $\mathrm{t}_{307}=$ \qquad
c) If $t_{n}=6.4 n-18 \mathrm{a}=$ \qquad

$$
d=
$$

\qquad $\mathrm{t}_{33}=$ \qquad
$\mathrm{t}_{750}=$ \qquad
d) $t_{n}=15-3 n$
$\mathrm{a}=$ \qquad $d=$ \qquad

$$
\mathrm{t}_{200}=
$$

\qquad
4) The following are called geometric sequences because the have a common multiplier ' r ' and a first term ' a '
Fill in the blanks and find the indicated term of the geometric sequences below
a) If $t_{n}=5(2)^{n-1}$

Sub in 1 to get $t_{1}=$ \qquad Sub in 2 to get $\mathrm{t}_{2}=$ \qquad
thus $a=$ \qquad Find $t_{10}=$ \qquad
$\mathrm{t}_{15}=$ \qquad
b) If $t_{n}=-40(0.5)^{n-1}$

Sub in 1 to get $t_{1}=$ \qquad Sub in 2 to get $\mathrm{t}_{2}=$ \qquad thus $a=$ \qquad
$=$
Find $\mathrm{t}_{8}=$ \qquad
$\mathrm{t}_{10}=$ \qquad
c) If $t_{n}=256(0.25)^{n-1} \quad$ Sub in 1 to get $\mathrm{t}_{1}=$ \qquad Sub in 2 to get $\mathrm{t}_{2}=$ \qquad
thus $\mathrm{a}=$ \qquad
$r=$ \qquad

Find $\mathrm{t}_{8}=$ \qquad
$\mathrm{t}_{10}=$ \qquad
d) If $t_{n}=\frac{1}{2}(4)^{n-1}$

Sub in 1 to get $t_{1}=$ \qquad Sub in 2 to get $t_{2}=$ \qquad
thus $\mathrm{a}=$ \qquad
$r=$ \qquad
Find $\mathrm{t}_{8}=$ \qquad
$\mathrm{t}_{12}=$ \qquad
5) Find the first 4 terms defined by the recursive sequence
a) $t_{n}=t_{n-1}+6 \quad \mathrm{t}_{1}=10$ $\mathrm{t}_{2}=$ \qquad $\mathrm{t}_{3}=$ \qquad $\mathrm{t}_{4}=$ \qquad
b) $\quad t_{n}=3 t_{n-1}-2 \quad \mathrm{t}_{1}=8$
$\mathrm{t}_{2}=$ \qquad
$\mathrm{t}_{3}=$ \qquad
$\mathrm{t}_{4}=$ \qquad
c) $t_{n}=t_{n-1}+t_{n-2} \mathrm{t}_{1}=1 \quad \mathrm{t}_{2}=1 \quad \mathrm{t}_{3}=$ \qquad $\mathrm{t}_{5}=$ \qquad

