In the function f(x) = mx + b

The independent variable = x (we choose it)

Dependent variable = f(x) (we find it)

Reason: the value of f(x) depends on the x we choose

Definitions:

Continuous function: y's exist for all real x-values (connect points with a continuous line)

Discrete Relation: only whole # x's exist ... so points cannot be connected by a line

Examples shown below

Stating the domain and range of a discrete function

Since only whole # values exist:	Domain:	<i>{0, 1, 2, 3, 4}</i>	
			Seems like this function starts at 0
	Range:	{ 2, 4, 6, 8, 10 ,}	

If the domain and range don't continue to ∞ , then you indicate largest value in domain and range.

Example: Cost of a pizza: c(t) = 1.5t + 12.50			.50 (maxi	(maximum of 10 toppings)					
Creates the ta	ble toppings	0	1	2	3	4	10 max		
	Cost:	12.50	14	15.50	17	18.50	27.50		
Domain:	{0, 1, ,2, 10}	R	ange:	<i>{</i> 12.5 <i>,</i> 14 <i>,</i> 15.5 <i>,</i> 27.50 <i>}</i>					

(Why no negative x's?) Can't have negative # of topping – 0 topping cheese pizza is smallest

Would the following be discrete or continuous?

Cost to host a banquet per guest coming? since per guest = Discrete

Temperature of a hot coffee vs time? Temperature drops continuously

Height of a sunflower as it grows? Growth is continuous but a max and min exist

#of cookies in a cookie jar vs time? Per cookie = discrete

X

9

Sketching Functions - Continuous and Discrete

1) Sketch the 5 functions on the axis - the domain and range are all real numbers

3) Determine if the following are discrete (D) or continuous (C)
a) temperature of a beaker of liquid vs time _____ b) height on a Ferris wheel vs time _____
c) graphing money won vs tickets bought ____ d) your paychecks vs hours worked _____

4) Plot the following DISCRETE functions for {0, 1, 2,3, 4} (Scale axis if needed)

f)

