Discrete vs. Continuous Functions

In the function $f(x)=m x+b$
The independent variable $=x$ (we choose it)
Dependent variable $=f(x)$ (we find it)
Reason: the value of $f(x)$ depends on the x we choose
Definitions:
Continuous function: y's exist for all real x-values (connect points with a continuous line)
Discrete Relation: only whole \# x's exist ... so points cannot be connected by a line

Examples shown below

Stating the domain and range of a discrete function
Since only whole \# values exist: Domain: $\quad\{0,1,2,3,4 \ldots\}$
Range: $\quad\{2,4,6,8,10, \ldots\}$
Seems like this function starts at 0

If the domain and range don't continue to ∞, then you indicate largest value in domain and range.

Example: Cost of a pizza: $\quad c(t)=1.5 t+12.50 \quad$ (maximum of 10 toppings)

| Creates the table toppings | 0 | 1 | 2 | 3 | $4 \ldots$. | 10 max |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cost: | 12.50 | 14 | 15.50 | 17 | 18.50 | 27.50 |

Domain: $\quad\{0,1,2, \ldots .10\}$
Range: $\quad\{12.5,14,15.5, \ldots .27 .50\}$
(Why no negative x 's?) Can't have negative \# of topping - 0 topping cheese pizza is smallest

Would the following be discrete or continuous?
Cost to host a banquet per guest coming? since per guest = Discrete
Temperature of a hot coffee vs time? Temperature drops continuously
Height of a sunflower as it grows? Growth is continuous but a max and min exist
\#of cookies in a cookie jar vs time? Per cookie = discrete

Sketching functions

When the domain is any real \#
Use your graphing rules
a) $f(x)=\frac{2}{3} x+5$
y-int $=5, m=2 / 3$

What if we fix the domain?

For example - if x represents time, or people

- Can't have neg x 's, line has a starting point
c) $\quad f(x)=-2 x+1, \quad x \geq 0$
y int $=1, m=-2$ but starts at $x=0$
d) $f(x)=\frac{2}{5} x-3, \quad x>0$
y int $=-3, m=2 / 5$ but starts at $x=0$ (hollow)

Sketching Discrete Functions

Banquet Hall + Guests

Formula: $\quad C(t)=15 x+250$ max 75 people

- y-int $=250, m=15$ (can't have negatives)
- the squiggle Allows me to not start at $(0,0)$

If the max number of people is 75, state the domain and range

D: $\quad\{0,1,2,2, \ldots, 75\}$
$R: \quad\{250,265,280, . . ., 1375\}$

Assignment $=$ worksheet

Sketching Functions - Continuous and Discrete

1) Sketch the 5 functions on the axis - the domain and range are all real numbers
a) $f(x)=3 x-2$
b) $\quad g(x)=4 x+1$
c) $\quad h(x)=\frac{3}{4} x-7$
d) $m(x)=\frac{-1}{5} x+3$
e) $\quad q(x)=\frac{-1}{6} x$

2) Using the fixed domains, sketch the 5 functions on the axis provided.
a) $f(x)=2 x-3, x \geq 0$
b) $\quad g(x)=-5 x+6, \quad x>0$
c) $\quad h(x)=\frac{3}{4} x-5, \quad x>0$
d) $\quad n(x)=3 x-8, \quad x \geq 2$
e) $p(x)=\frac{1}{3} x+4, x>3$

3) Determine if the following are discrete (D) or continuous (C)
a) temperature of a beaker of liquid vs time \qquad b) height on a Ferris wheel vs time \qquad
c) graphing money won vs tickets bought \qquad d) your paychecks vs hours worked \qquad
e) bean length vs \# of individuals \qquad f) cost to rent a plumber if they charge for each $1 / 4$ hour \qquad
4) Plot the following DISCRETE functions for $\{0,1,2,3,4\} \quad$ (Scale axis if needed)
a) $f(x)=2 x-6$

d) $p(x)=\frac{1}{2} x+2$

Do Page 294
4a) D:

R:

10a)

12a)
13a)
b)
b)
b) D :
$R:$
b)
e) $t(x)=-20 x+80$

b)
)
c)
c) D :

R:
c) $\quad h(x)=10 x-25$

f) $\quad k(x)=\frac{1}{2} x^{2}$

d)

