Domain:
 A list of permitted x-values (or non-permitted x-values)
 Range: A list of permitted y-values (or non-permitted y-values)

If no x-restrictions exist – then graph has a domain of x ε *R* (*x is any real number*)

Notation: Inequality versus set notation $> or < \rightarrow$ not = to curved brackets ()

 \leq or $\geq \rightarrow$ since = square brackets []

From Math 9: \geq , \leq were solid dots on a number line

but <, > were hollow dots on a number line

Write the following using set notation

a)	-6≤x≤ 18		b) -3 < x ≤ 12		c) 3 ≤ x < 8	
	both = [-6, 18]		only right = (-3, 12]		only left = [3, 8)	
d)	x < 17		e) x ≥ -4		f) x < 19	
left is	-ω, can't = that (-ω, 17)		right is ∞, can't = that [-4, ∞)		left is -∞, can't = that (-∞, 19)	
Write the following using inequalities (assume these are domain and x's)						
a)	[3, 19]	b)	(-12, 180]	c)	[-8, 32)	
both =	3 ≤ x ≤ 19	right=	-12 < x ≤ 180	left=	-8 ≤ x < 32	
we don't usually include ∞ in inequality statement so these are 1-sided inequalities.						
d)	(-∞, 14)	e)	[6, ∞)	f)	(-∞ , -15]	
	x < 14		6≤x or x≥6		x < -15	

What is the domain and range of a y = mx + b line? (why?)

Lines go up/down left/right forever so $D: x \in R$ $R: y \in R$

Why is this statement NOT allowed [6, ∞] Only Chuck Norris can reach infinity ϖ

We will focus our work on finding the domain and range of a given graph

Range: lowest point to highest point

Domain and Range

1) a)	Write using set notation $-6 \le x < 10$	b)	-10 < x < 100	c)	-4 ≤ x < 8
d)	x > 12	e)	x < 10	f)	x ≥ -3

2) Use <u>set notation</u> to state the domain and range of the functions shown on the axis

g(x): D:

R:

g(x): D:

R:

g(x):

D:

3) a)	<i>Write using inequalities</i> [-4, 2]	b)	(-3, 10]	c)	[2, ∞)
d)	(-∞. 3)	e)	[12, 110)	f)	(3, ∞)

D:

R:

f(x):

R:

g(x):	D:	R:	g(x): D:	
Also tr #7a)	y text Page 294 b)	9a)		b)
c)	d)	c)		d)

Use inequalities to state the domain and range of the functions shown on the axis 4)