Domain and Range of a function

Domain: A list of permitted x-values
(or non-permitted x-values)

Range: A list of permitted y-values
(or non-permitted y-values)

If no x-restrictions exist - then graph has a domain of $x \in R$ (x is any real number) Notation: Inequality versus set notation >or < not = to curved brackets ()

$$
\leq \text { or } \geq \rightarrow \quad \text { since }=\text { square brackets [] }
$$

From Math 9: $\quad \geq$, \leq were solid dots on a number line
but <, > were hollow dots on a number line
Write the following using set notation
a) $-6 \leq x \leq 18$
b) $-3<x \leq 12$
c) $3 \leq x<8$
both $=[-6,18]$
only right $=(-3,12]$
only left $=[3,8)$
d) $x<17$
e) $x \geq-4$
f) $x<19$
left is $-\infty$, can't = that
right is ∞, can't = that
$(-\infty, 17)$
$[-4, \infty)$
left is $-\infty$, can't $=$ that
$(-\infty, 19)$

Write the following using inequalities (assume these are domain and x 's)
a) $[3,19]$
b) (-12, 180]
c) $[-8,32)$
both $=3 \leq x \leq 19$
right $=-12<x \leq 180$
left $=-8 \leq x<32$
we don't usually include ∞ in inequality statement ... so these are 1 -sided inequalities.
d) $(-\infty, 14)$
e) $[6, \infty)$
f) $(-\infty,-15]$
$x<14$
$6 \leq x$ or $x \geq 6$
$x<-15$

What is the domain and range of $a y=m x+b$ line? (why?)
Lines go up/down left/right forever so D: x $\varepsilon R \quad R: y \in R$
Why is this statement NOT allowed [$6, \infty$] Only Chuck Norris can reach infinity (3)
We will focus our work on finding the domain and range of a given graph

Key things to look for: domain: farthest left to farthest right
Range: lowest point to highest point
$f(x), g(x)$ and $h(x)$ are shown on the given graph state the domain and range using set notation
$f(x):$
D: $\quad[-6,5)$
R: $\quad[3,7]$
dashed lines left/right high/low of graph left $=$, right not, low $=$, high $=$ note brackets
$g(x):$
D: $[-6, \infty)$
R: $\quad[-2, \infty)$
left $=$, right $\rightarrow \infty$
low $=$ high $\rightarrow \infty$
$h(x): D: \quad(-\infty, \infty) \quad R: \quad(-\infty,-4]$
arrows x's both sides
high $=$, no low

$f(x), g(x)$ and $h(x)$ are shown on the given graph state the domain and range using inequalities
$f(x):$
D: $\quad-6 \leq x$
$R: \quad y \leq 5$
left $=$, no right
high $=$, no low
$g(x)$:
$D: \quad x \varepsilon R$
$R: \quad y \geq-3$
no left or right low $=$, no high
$* h(x):$ left not $=$, no right
High not $=$, no low
Hollow dot $(-4,-3)$

D: $\quad x>-6, x \neq-4$
R: $y<-3$
Assignment $=$ worksheet

1) Write using set notation
a) $-6 \leq x<10$
b) $-10<x<100$
c) $-4 \leq x<8$
d) $x>12$
e) $x<10$
f) $x \geq-3$
2) Use set notation to state the domain and range of the functions shown on the axis

$f(x): \quad D:$
$\mathrm{g}(\mathrm{x}): \quad \mathrm{D}:$
R:

$f(x): \quad D:$
$g(x): \quad D:$
R:

$f(x):$
D:
R:

$$
\mathrm{g}(\mathrm{x}): \quad \mathrm{D}:
$$

R:

$f(x): \quad D:$
R:
$g(x):$
D:
R:
3) Write using inequalities
a) $[-4,2]$
b) $(-3,10$]
c) $[2, \infty)$
d) $(-\infty .3)$
e) $[12,110)$
f) $(3, \infty)$
4) Use inequalities to state the domain and range of the functions shown on the axis

$f(x)$:
D:
$g(x): \quad D:$

$f(x)$:
D:
R:
$\mathrm{g}(\mathrm{x}): \quad \mathrm{D}:$
R:

Also try text Page 294
\#7a)
b)
c)
d)

9a)
c)
c)

$f(x):$
$g(x): \quad D:$
R:

$g(x): \quad D:$

R:
R:
b)
d)

