A quadratic function is of the form $y=a x^{2}+b x+c$. To solve a quadratic function means to find the x-intercept, called the zeroes.

A quadratic equation is of the form $a x^{2}+b x+c=0$. To solve a quadratic equations means to find the -intercepts called the roots.

Example 1: Solve $3 x^{2}-11 x-4=0$ using graphing. (ie. Find the roots.)

Example 2: Find the zeroes for $y=x^{2}-x-20$.

> zeroes:
> $x=-4,5$

Example 3: What are the roots for $x^{2}-6 x+9=0$?

Roots:

10

$$
x=3
$$

Example 4: The manager at Suzie's Fashion Store has determined that the function $R(x)=600-6 x^{2}$ models the expected weekly revenue, R, in dollars, from sweatshirts as the price changes, where x is the change in price, in dollars. What price increase or decrease will result in mo revenue?

A price increase of $\$ 10(+10)$
or a price decrease $\$ 10(-10)$ will result in no revenue.

Example 5: Solve $3 x^{2}-6 x+5=2 x(4-x)$ by graphing. \forall Goal - Make one side $=0 \forall$
 $3 x^{2}-6 x+5=2 x(4-x)$ $3 x^{2}-6 x+5=8 x-2 x^{2}$
$+2 x^{2}$
$+2 x^{2}$

$$
\begin{gathered}
5 x^{2}-6 x+5=8 x \\
-8 x
\end{gathered}=8 x
$$

Example 6: Lamont runs a boarding kennel for dogs. He wants to construct a rectangular play space for the dogs, using 40 m of fencing and an existing wall as one side of the play space.
a. Write a function that describes the area, A, of the play space in terms of any width, w.
b. Determine the number of possible widths for an area of:
i. $\quad 250 \mathrm{~m}^{2}$
ii. $\quad 200 \mathrm{~m}^{2}$
iii. $\quad 150 \mathrm{~m}^{2}$

Assignment :-70 270,10-12
HW p. 379 \#4-7

