Last day we learned that
$f(2)$ means what is y when $x=2$
and $f(x)=\mathbf{2}$ means for what x does $y=2$
Now we look at this in terms of a graph
But instead of 'plugging in x ' or solving for x
we will go to the graph called $f(x)$ and find the requested value

1) The graph of $f(x)$ and $g(x)$ are shown on the axis below - use the graph to determine the value(s) of the following statements
a) $\quad f(2)$
if $x=2$

$$
f(2)=5
$$

b) $\quad g(2)$
$f(2)=5$
c) $f(-2)$
if $x=-2$

$$
f(-2)=7
$$

d) $\quad 9(-2)$
$f(-2)=7$

$$
g(-2)=-2
$$

e) $f(6)$
if $x=6$

$$
f(6)=-3
$$

f) $\quad g(-4)$
if $x=-4$

$$
g(-4)=3
$$

h) $g(x)=-2$
g) $\quad f(x)=-1$

$$
x=5
$$

$$
x=-4 \text { or } 2
$$

i) $f(x)=3$
when does $f(x)=3$

$$
x=-6 \text { or } 3
$$

k) $\quad f(-4)+g(-4)$ I)
j) $\quad f(x)=g(x)$
when does $f(x)=g(x)$ that's an intersection $p t$

$$
x=4
$$

$$
f(0)-g(0)
$$

$x=-4$

$$
\begin{gathered}
5+-1 \\
f(-4)+g(-4)=-4
\end{gathered}
$$

$x=0$
6--3
$f(0)-g(0)=9$

(k and I) above imply we could create a new graph - let's create $y=f(x)+g(x)$ We do this by adding the y-values together for each x (ex. Far right pt. $3+-3=0$)

Let's combine $\quad f(x)-g(x)$
here we subtract y 's $f-g$ (watch for --)

$f(x)+g(x)$
add y 's $f+g$

A graph is only considered a function if

For every x value you produce a single y value - which is a fancy way of saying
The graph can't cross back on itself

function

Solve $f(x)=0$ for the function shown to the right $X=-5,-1,2,4,6$

Is this graph foreshadowing graphs that you will encounter in your future?

Assignment = worksheet

Graphs and $f(x)$

1) The graph of $f(x)$ and $g(x)$ are shown on the axis below - use the graph to determine the value(s) of the following statements
a) $f(2)$
b) $\quad g(2)$
c) $f(-3)$
d) $9(-1)$
e) $f(6)$
f) $\quad g(-4)$
g) $f(x)=7$
h) $g(x)=-6$
i) $f(x)=4$
j) $\quad g(x)=2$
k) $f(2)+g(-5)$
I) $f(-4)+g(-4)$

2) Sketch the graph: $f(x)+g(x)$
3) The graph of $f(x)$ and $g(x)$ are shown on the axis below - use the graph to determine the value(s) of the following statements
a) $f(2)$
b) $\quad g(2)$
c) $f(-6)$
d) $9(-6)$
e) $f(x)=g(x)$
f) $\quad g(0)$
g) $f(x)=2$
h) $g(x)=3$
i) $f(x)=0$
j) $f(x)=-1$

4) Sketch the graph: $f(x)-g(x)$
5) The graph of $f(x)$ and $g(x)$ are shown on the axis below - use the graph to determine the value(s) of the following statements
a) $f(2)$
b) $\quad \mathbf{g}(6)$
c) $f(x)=g(x)$
d) $g(x)=-1$
e) $f(x)=-2$
f) $\quad g(0)$
g) $g(-3)+f(-4)$
h) $f(x)=5$
i) $\quad g(x)=6$
j) $f(-2)-g(-6)$

6) Sketch the graph: $f(x)+g(x)$
7) Write the equation of the $g(x): \quad g(x)=$ \qquad
8) Given $f(x)=9 x-12, g(x)=14 x+1$ and $h(x)=x^{2}-8 x$ find
a) $f(4)$
b) $\quad 9(-2)$
c) $h(2)$
d) $h(-10)$
e) $g(x)=15$
f) $f(x)=10$
g) $h(-5)$
h) $\quad g(x)=7$
i) $f(x)=12$
j) $\quad g(x)=9$
k) $g(x)=-18$
9) $f(x)=200$
m) $f(-1)-g(-2)+h(2)$
n) $\quad g(x)=f(x)$
*) $h(x)=0$
