A system of equations can have:

0 solutions if the lines are parallel (x and y are the same multiple)

co solutions if the lines are the same (all parts are the same multiple)

1 solutions if the slopes are different (x and y are different multiples)

1) Without solving, how many solutions will the following systems have:

a)	8x + 9y = 20	b)	8x + y = 10	c)	y = 9x - 19
	16x + 18y = 40		16x + 2y = 5		y = 9x + 3
al	x2 x2 x2 Il the same multiple & solutions		x2 x2 ÷2 x, y multiples 0 solutions		same slope of 9 parallel 0 solutions
d)	15x – 2y = 30 7x + 8y = 11	e)	4x - 3y = 20 12x + 9y = 60	f)	y = 2x + 30 4x - 2y = 7
	x7/15 x 4 different multiples 1 solution		looks like all x 3 but y's x-3 1 solution		rearrange 4x – 7 = 2y 2x – 3.5 = y same slope of 2 0 solutions

2) Given the equation 6x - 3y = 5 write a second equation so that the system has

a) 0 solutions		b)	∞ solutions	c)	1 solution
just x, y multiples of 9			all multiples of 5	any:	thing 1 multiple
54x – 27y = 3.14			30x – 15y = 25	36x –	- 11y = 962

<u>Distance problems</u>			
A common formula is	D = R t		
	D = distance	R = rate	T = time

This is for the famous train problem

1) A train leaves Chicago at noon traveling 60km/h. At 2 pm, a second train leaves Chicago traveling 82 km/h on parallel tracks. How long will it take the 2nd train to catch the first?

 Train 1
 train 2

 D = 60t
 D = 82(t - 2)
 since 2 hours less

 Since train 2 catches train 1 D = D
 60t = 82t - 164
 -22t = -164
 t = 7.45 hours (distance = 447 km)

2) Two towns (Rockstar and Wreckingball) are 800 km apart. Car A leaves town Rockstar traveling 90 km/h. Car B leaves Wreckingball traveling 65 km/h, 2 hours later. When and where will the two cars meet?

Car 1: $D_1 = 90t$ Car 2: $D_2 = 65(t-2)$ since leaves 2 hours later

But Car 1 + Car 2 = 800 km travelled so...

90t + 65(t - 2) = 800	(that's 1 variable so jus				
	90t + 65t - 130 = 800	155t = 930	t = 6 hours		
	Car A is 540 km from Rockstar				
	Car B is 260 km from Wreckingball				

3) Kelsey drove 404 km from Edmonton to Banff in the same length of time that Spencer took to drive 364 km from Edmonton to Jasper. Spencer drove 15 km/h slower than Kelsey. What speed did they drive at?

Kelsey 404 = Rt	Spencer 364 = (R-15)t		
$\frac{404}{R}=t$	$\frac{364}{R-15} = t$	since we know	t is same for both make =
$\frac{364}{R-15} = \frac{404}{R}$	→ 364R = 404R - 6060	-40R = -6060	R = 151.5 km/h Kelsey R = 136.5 km/h Spencer

They both deserve speeding tickets

Distance Problems and # of solutions worksheet

1)) Without solving, state the number of solutions to the following systems						
a)	2x + y = 8 4x + 2y = 16	b)	3x + y = 9 6x + 2y = 12	c)	x + y = 8 -5x + y = 1	d)	4x - y = 8 -2x + y = -3
e)	-4x + 2y = -10 2x - y = 3	f)	2x + y = -1 6x + 3y = -3	g)	y = -6x + 7 y = 5x - 6	h)	2x + y = 5 4x + y = 9
i)	3x - y = 0 6x - 2y = 0	j)	x + y = 2 3x = 6 - 3y	k)	x + 4y = 8 y = -2x	I)	2y = 3x - 1 8y - 4 = 12x

2)	For what value of 'C' will the following have ∞ solutions					
a)	2x - 6y = C	Ь)	Cx - 4y = 14	c)	x + 2y = 6	
	6x - 18y = 30		9x - 6y = 21		Cx + 10y = 30	

3) A car leaves Revelstoke traveling at 75 km/h at 3pm. At 5pm a second car leaves Revelstoke traveling at 95km/h. How long will it take the 2^{nd} car to catch the first?

4) A car leaves Banff traveling at 92 km/h at noon. At 1.5 pm a second car leaves Banff traveling at 102km/h. How long will it take the 2nd car to catch the first?

5) Two towns are 460 km apart. Melanie leaves town A traveling 80 km/h. Annick leaves town B traveling 75 km/h, but leaves 2 hours later. When and where will the two cars meet?

6) Two cities are 190 km apart, one car leaves town A at 60 km/h, the other leaves town B going 72 km/h. If they are meeting for a picnic, how far from town A will the picnic take place?

7) Jasdeep flew 604 km in the same length of time that Razvessh took to fly 580 km. If Jasdeep flew 20 km/h faster than Razvessh, what speed did each of them fly at?

8) The speed of a plane is seven times as great as the speed of the car. The car takes 3 hours longer than a plane to travel 315 km. Find the speed of the plane and car.

#10	#11	ai)	#22 1, 0, ∞	aii)	1, 0, ∞	aiii)	1, 0, ∞
#19a)	b)	#20a))		b)		

Now try Text Page 448