A system of equations can have:
0 solutions if the lines are parallel (x and y are the same multiple)
∞ solutions if the lines are the same (all parts are the same multiple)
1 solutions if the slopes are different (x and y are different multiples)

1) Without solving, how many solutions will the following systems have:
a) $8 x+9 y=20$
$16 x+18 y=40$
x2 x2 x2
all the same multiple
∞ solutions
b) $8 x+y=10$
$16 x+2 y=5$
$x 2 \quad x 2 \div 2$
x, y multiples
0 solutions
looks like all x 3
but y's x-3
1 solution
c) $y=9 x-19$
$y=9 x+3$
same slope of 9
parallel
0 solutions
d) $15 x-2 y=30$
$7 x+8 y=11$
x7/15 x 4
different multiples
1 solution
e) $\begin{aligned} 4 x-3 y & =20 \\ 12 x+9 y & =60\end{aligned}$
e) $\begin{aligned} 4 x-3 y & =20 \\ 12 x+9 y & =60\end{aligned}$
f) $y=2 x+30$
$4 x-2 y=7$
2) Given the equation $6 x-3 y=5$ write a second equation so that the system has
a) \mathbf{O} solutions
c) 1 solution
just x, y multiples of ... 9
$54 x-27 y=3.14$
b) $\quad \infty$ solutions
all multiples of ... 5
$30 x-15 y=25$
anything 1 multiple
$36 x-11 y=962$

Distance problems
A common formula is $D=R t$

$$
D=\text { distance } R=\text { rate } T=\text { time }
$$

This is for the famous train problem

1) A train leaves Chicago at noon traveling $60 \mathrm{~km} / \mathrm{h}$. At 2 pm , a second train leaves Chicago traveling $82 \mathrm{~km} / \mathrm{h}$ on parallel tracks. How long will it take the $2^{\text {nd }}$ train to catch the first?

Train 1
$D=60 t$
train 2
$D=82(t-2)$ since 2 hours less

Since train 2 catches train 1 D = D

$$
60 t=82 t-164
$$

$$
-22 t=-164 t=7.45 \text { hours }
$$

$$
\text { (distance = } 447 \text { km) }
$$

2) Two towns (Rockstar and Wreckingball) are 800 km apart. Car A leaves town Rockstar traveling 90 km/h. Car B leaves Wreckingball traveling $65 \mathrm{~km} / \mathrm{h}, 2$ hours later. When and where will the two cars meet?

Car 1: $\quad D_{1}=90 t \quad$ Car 2: $\quad D_{2}=65(t-2) \quad$ since leaves 2 hours later
But Car 1 + Car $2=800 \mathrm{~km}$ travelled so...

$$
\begin{array}{ll}
90 t+65(t-2)=800 & \text { (that's } 1 \text { variable so just solve) } \\
& 90 t+65 t-130=800 \quad 155 t=930 \quad t=6 \text { hours } \\
& \text { Car } A \text { is } 540 \mathrm{~km} \text { from Rockstar } \\
& \text { Car B is } 260 \mathrm{~km} \text { from Wreckingball }
\end{array}
$$

3) Kelsey drove 404 km from Edmonton to Banff in the same length of time that Spencer took to drive 364 km from Edmonton to Jasper. Spencer drove 15 km/h slower than Kelsey. What speed did they drive at?

$$
\begin{array}{lcc}
\begin{array}{l}
\text { Kelsey } \\
404=R t
\end{array} & \begin{array}{l}
\text { Spencer } \\
364=(R-15) t
\end{array} \\
\frac{404}{R}=t & \frac{364}{R-15}=t & \text { since we know } t \text { is same for both make }= \\
& & \\
\frac{364}{R-15}=\frac{404}{R} \rightarrow & 364 R=404 R-6060 & -40 R=-6060
\end{array} \begin{aligned}
& R=151.5 \mathrm{~km} / \mathrm{h} \text { Kelsey } \\
& R=136.5 \mathrm{~km} / \mathrm{h} \text { Spencer }
\end{aligned}
$$

They both deserve speeding tickets

1) Without solving, state the number of solutions to the following systems
a) $2 x+y=8$ $4 x+2 y=16$
b) $3 x+y=9$
$6 x+2 y=12$
c) $x+y=8$
$-5 x+y=1$
d) $4 x-y=8$
$-2 x+y=-3$
e) $-4 x+2 y=-10$
$2 x-y=3$
f) $2 x+y=-1$
$6 x+3 y=-3$
g) $y=-6 x+7$
$y=5 x-6$
h) $\quad \begin{array}{r}2 x+y=5 \\ 4 x+y=9\end{array}$
i) $3 x-y=0$
j) $\quad x+y=2$
$6 x-2 y=0$
$3 x=6-3 y$
k) $x+4 y=8$
$y=-2 x$
I) $2 y=3 x-1$
$8 y-4=12 x$
2) For what value of ' C ' will the following have ∞ solutions
a) $2 x-6 y=C$
b) $\quad C x-4 y=14$
c) $x+2 y=6$ $6 x-18 y=30$
$9 x-6 y=21$
$C x+10 y=30$
3) A car leaves Revelstoke traveling at $75 \mathrm{~km} / \mathrm{h}$ at 3pm. At 5pm a second car leaves Revelstoke traveling at $95 \mathrm{~km} / \mathrm{h}$. How long will it take the $2^{\text {nd }}$ car to catch the first?
4) A car leaves Banff traveling at $92 \mathrm{~km} / \mathrm{h}$ at noon. At 1.5 pm a second car leaves Banff traveling at $102 \mathrm{~km} / \mathrm{h}$. How long will it take the $2^{\text {nd }}$ car to catch the first?
5) Two towns are 460 km apart. Melanie leaves town A traveling $80 \mathrm{~km} / \mathrm{h}$. Annick leaves town B traveling $75 \mathrm{~km} / \mathrm{h}$, but leaves $\mathbf{2}$ hours later. When and where will the two cars meet?
6) Two cities are 190 km apart, one car leaves town A at 60 km/h, the other leaves town B going $72 \mathrm{~km} / \mathrm{h}$. If they are meeting for a picnic, how far from town A will the picnic take place?
7) Jasdeep flew 604 km in the same length of time that Razvessh took to fly 580 km . If Jasdeep flew 20 km/h faster than Razvessh, what speed did each of them fly at?
8) The speed of a plane is seven times as great as the speed of the car. The car takes 3 hours longer than a plane to travel 315 km . Find the speed of the plane and car.

Now try Text Page 448
\#10
\#11
\#22
ai) $1,0, \infty \quad$ aii) $1,0, \infty \quad$ aiii) $1,0, \infty$
\#19a)
b)
\#20a)
b)

