As we approach our word problem study ... we will want to use the most efficient way to solve a system. These examples will review both methods and we will decide which method seems easiest 🥲

Solve the followin a) x – 6y = 10 4x + y = 4	ng systems				
Pretty easy to ma	1ke x = 10 + 6y a	nd sub in 4(<mark>10 + 6</mark>	y) + y = 4		
40 + 24y + y = 4	25y = -36 y =	$=\frac{-36}{25}$ thus $x=1$	$10+6\left(\frac{-36}{25}\right)$	$x=\frac{34}{25}$	or $\left(\frac{34}{25}, \frac{-36}{25}\right)$
b) 5x - 3y = 10 2x - y = 3) x3 looks easy	(same signs so -)			
5x - 3y = 10)				
$\frac{0x-3y-3}{-x} = 1$	x = -1	2(-1) – 3 = y	y = -5	or	(-1, -5)
c) $5(x - 2y) + 2$ 9x - (x + y) 5x - 10y + 7 9x - x - y =	7 = 4x = 12 It's too soon 7 = 4x x - 12 8x	n to decide on a metho 10y = -7 x = - – y = 12	d need to clean 7 + 10y and s	these up ub in	
8(-7 + 10y)	– y = 12 -56	5 + 80y - y = 12 7:	9 y = 68	$= \frac{68}{79}$ $x =$ $= \frac{127}{79}$ or	$= -7 + 10(\frac{68}{79})$ $\left(\frac{127}{79}, \frac{68}{79}\right)$
d) $\frac{x}{2} - 7y = -\frac{x}{4} + \frac{y}{3} = 3$	-17 x2 x12	again, it's too soo	n to decide on a n	nethod need	l to clean these up
x - 14y = -34 3x + 4y = 36	x3 3x - <u>3x</u> -	– 42y = -102 <u>+ 4y = 36</u> 46y = -138 y	= 3 x = -34 -	+ 14(3) x	= 8 or (8, 3)

Notice I used the LCM of the denominators in each case ... but I just needed a # to cancel denominators

Assignment = worksheet

Systems mix-up Solve using the method of your choice							
1a)	2c - d = -2 3c + 2d = -10	b)	a = 3 – 4b 2a + 5b = 3	c)	x = 5 + 2y 2x - 3y = 6		
d)	2y - x = 5 $3y - 2x = 7$	e)	x + 2y = -3 2x + 3y = -4	f)	8M – 3W = -10 2M – 5W = 6		
g)	4x + 3y = 15 8x - 9y = 15	h)	3B + 6Q = -1 4B - 5 Q = -22	i)	F = 3E – 2 5E + 2F = 3		

j)	2x - 5y = 12 x = -9 - 10y	k)	y = 5 - x y = ½ x + 3	1)	3x - 2y = -12 x - 4y = 8
m)	6x - 5y = -3 9x - 2y = 1	n)	3R + 4 = -4T 7R + 11 = -6T	o)	10x = 17 – 15y 15x = 25y – 3
p)	4x - 5 = 2y 1 = 5y - 10x	<i>q)</i>	2(x - 1) - 3(y - 3) = 0 3(x + 2) - (y - 7) = -7	Text	Page 426 #19a