Solving Systems using Elimination

7x - 3y = 652x + 3y = 34Problem?? No easy way to get a x = or y = equation.

But all we need to do is eliminate a variable ... and those y's are lined up nicely Since -3 + 3 = 0 we could add the equations together

7x - 3y = 65 + 2x + 3y = 34 $9x = 99 \rightarrow x = 11 \qquad \text{so } 7(11) - 3y = 65 \quad -3y = -12 \qquad y = -4$

This method only works if you have matching coefficients in a pair of variables

Solve the following				
a)	9x + 8y = 13			
	6x - 4y = -10	no match-up so multiply equation 2 by 2 $(8 + -8 = 0 \text{ so add})$		
	$0_{11} + 0_{12} = 12$			
	9x + 8y = 13			
+	$\frac{12x - 8y = -20}{21x - 7}$	y = 1 or $0(1/2) + 0y = 12$ $0y = 16$ $y = 2$ or $(1/2)$		
	21x = -7	$x = -\frac{1}{3}$ so $9(-\frac{1}{3}) + 8y = 13$ $8y = 16$ $y = 2$ or $(-\frac{1}{3}, 2)$		
b)	13x + 5y = 7	х3		
	10x + 3y = 2	x5 no match-up so multiply eq #1 by 3, eq #2 by 5 (15 – 15 = 0 so subtract)		
	39x + 15y = 21			
-	<u>50x + 15y = 10</u>			
	-11x = 11	x = -1 so $13(-1) + 5y = 7$ $5y = 20$ $y = 4$ or $(-1, 4)$		
c)	7x – 5y = 11	x9		
•,	9x + 3y = 10	x7 (same signs so -)		
	5x · Cy 20			
	63x – 45y = 99			
-	<u>63x + 21y = 70</u>			
	-66y = 29	$y = \frac{-29}{66}$ so $7x = 11 + 5\left(\frac{-29}{66}\right)$ $7x = \frac{581}{66}$ $x = \frac{83}{66}$ or $\left(\frac{83}{66}, \frac{-29}{66}\right)$		
		⁶⁶ 66 66 66 66 66 66 66 66 66 66 66 66		
d)	x – 10y = 23	x2		
-	2x + 20y = 11			
	-			
	2x - 20y = 46	+ to remove y's , - to remove x's we will -		
-	2x + 20y = 11			
	-40y = 35 y =	$=\frac{-7}{8}$ so $x = 23 + 10\left(\frac{-7}{8}\right)$ $x = \frac{57}{4}$ or $\left(\frac{57}{4}, \frac{-7}{8}\right)$		
		Assignment = worksheet		

Did you hear about... (Solve with Elimination Sheet) С D Ε F Α В THE 1 J Κ G Η L ? BIRDSEED 5x + 6y = -11 7x + 2y = -13x - 5y = 13С В L x-2y=53x + y = -43x - 4y = 19

J4x - 3y = -20F7x - 3y = -5Dx + 2y = 6-x - 8y = 53x + 2y = 115x + 3y = 2

К	-3x + 7y = -1	Ε	2x+3y=7	Н	4x + 3y = 9
	-2x + 5y = 0		3x+4y=10		3x+4y=12

	ANSWERS				
	COWS	(1, 4)	TWEET (1, 2)		
M	IILK	(-1, -1)	HIS (2, 1)		
FAF	MER	(1, -2)	SELLING (-5, 0)		
B	AND	(0, 3)	BIRDSEED (=1, -2)		
W	INGS	(2, -4)	UDDER (2, 0)		
T	WHO	(1, -4)	SINGING (-5, 4)		
-	MOO	(1, 3)	STARTED (2, -2)		
6	CHEEP	(5, 2)	FED (-2, 4)		
E	BEEF	(3, -2)	BUTTER (-1, 3)		
,7 🖵 🗠					

1	5x-3y=16
	4x + 5y = -2

Now complete Pg. 437 #6, 7