Solving Systems using Elimination

$7 x-3 y=65$
$2 x+3 y=34 \quad$ Problem?? No easy way to get $a x=$ or $y=$ equation.
But all we need to do is eliminate a variable ... and those y's are lined up nicely
Since $-3+3=0$ we could add the equations together

$$
\begin{array}{r}
7 x-3 y=65 \\
+\quad 2 x+3 y=34 \\
\hline 9 x=99
\end{array} \rightarrow x=11 \quad \text { so } 7(11)-3 y=65 \quad-3 y=-12 \quad y=-4
$$

This method only works if you have matching coefficients in a pair of variables

Solve the following

a) $9 x+8 y=13$
$6 x-4 y=-10 \quad$ no match-up so multiply equation 2 by $2(8+-8=0$ so add)
$9 x+8 y=13$
$+\quad 12 x-8 y=-20$
$21 x=-7 \quad x=-1 / 3 \quad$ so $9(-1 / 3)+8 y=13 \quad 8 y=16 \quad y=2 \quad$ or $(-1 / 3,2)$
b) $13 x+5 y=7 \quad x 3$
$10 x+3 y=2 x 5$ no match-up so multiply eq \#1 by 3, eq \#2 by 5 (15-15 = 0 so subtract)
$39 x+15 y=21$
$50 x+15 y=10$
$-11 x=11 \quad x=-1 \quad$ so $13(-1)+5 y=7 \quad 5 y=20 \quad y=4 \quad$ or $(-1,4)$
c) $7 x-5 y=11 \quad x 9$
$9 x+3 y=10 \quad x 7 \quad$ (same signs so -)
$63 x-45 y=99$
$63 x+21 y=70$

$$
-66 y=29 \quad y=\frac{-29}{66} \text { so } 7 x=11+5\left(\frac{-29}{66}\right) \quad 7 x=\frac{581}{66} \quad x=\frac{83}{66} \text { or }\left(\frac{83}{66}, \frac{-29}{66}\right)
$$

d) $x-10 y=23 \quad x 2$
$2 x+20 y=11$
$2 x-20 y=46 \quad+$ to remove y 's , to remove x 's we will -
$\underline{2 x+20 y=11}$

$$
-40 y=35 \quad y=\frac{-7}{8} \text { so } x=23+10\left(\frac{-7}{8}\right) \quad x=\frac{57}{4} \quad \text { or }\left(\frac{57}{4}, \frac{-7}{8}\right)
$$

Did you hear about... (Solve with Elimination Sheet)

| A | B | C | D | E | F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| THE | H | I | J | K | \boldsymbol{L} |
| BIRDSEED | | | | | |

B $\quad 3 x-5 y=13$
$x-2 y=5$
$L \quad 5 x+6 y=-11$
$3 x+y=-4$
C $\quad 7 x+2 y=-1$
$3 x-4 y=19$

J $4 x-3 y=-20$
$-x-8 y=5$
F $\quad 7 x-3 y=-5$
$3 x+2 y=11$
D $\quad \begin{aligned} & x+2 y=6 \\ & \\ & 5 x+3 y=2\end{aligned}$

K $\quad-3 x+7 y=-1$
$-2 x+5 y=0$
E $\quad 2 x+3 y=7$
$3 x+4 y=10$
H $\quad 4 x+3 y=9$
$3 x+4 y=12$

$$
\text { (} \quad 5 x-3 y=16
$$

ANSWERS	
COWS (1, 4)	TWEET $(1,2)$
MILK (-1, -1)	HIS (2, 1)
FARMER (1, -2)	SELLING ($-5,0$)
AND (0, 3)	BIRDSEEE - $(-1,-2)$
WINGS (2, -4)	UDDER $(2,0)$
	THE - (2,3)
WHO (1, -4)	SINGING $(-5,4)$
MOO (1, 3)	STARTED $\quad(2,-2)$
CHEEP (5, 2)	FED $\quad(-2,4)$
BEEF ($3,-2)$	BUTTER (-1,3)

