Solving Systems by Substitution

We learned that a solution to a system is where the lines/graphs cross
But graphing is not accurate enough (we had to guess on the accuracy of the point)
Algebraic methods are better as they will produce exact answers.
The key will be to have $a y=$ or $x=$ equation

1) Solve the following
a) $y=2 x-5$
$4 x+y=13$
To solve the system - those y 's must be the same. The y in $4 x+y=13$ must be $2 x-5$
So substitute it: $\quad 4 x+(2 x-5)=13 \rightarrow 6 x-5=13 \rightarrow 6 x=18$ thus $x=3$

$$
\text { And } y=2(3)-5 \quad \text { so } y=1 \quad \text { as a point }(3,1) \text { solves this system }
$$

b) $x=9 y+1$
$5 x-3 y=19$
Here we know x... sub in
$5(9 y+1)-3 y=19 \rightarrow$
$45 y+5-3 y=19$
$42 y=14$
$y=1 / 3$ and $x=9(1 / 3)+1$
$x=4$
as a point ($4,1 / 3$) solves this system
c) $6 x-y=7$
$3 x-7 y=10$
We don't have $a y=$ but we can make one $. . .6 x-7=y$
$3 x-7(6 x-7)=10 \rightarrow 3 x-42 x+49=10$
$-39 x=-39 \quad x=1$

$$
Y=6(1)-7 \quad y=-1
$$

as a point (1, -1) solves this system
Not all answers are nice and neat ...
d) $5 x-3 y=10$

$$
x-7 y=11
$$

$x=11+7 y \quad 5(11+7 y)-3 y=10 \rightarrow 55+35 y-3 y=10 \quad 32 y=-45$
$y=\frac{-45}{32} \quad x=11+7\left(\frac{-45}{32}\right) \quad$ use your fraction button $x=\frac{37}{32} \quad\left(\frac{37}{32}, \frac{-45}{32}\right)$

1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12	12

$1 \quad y=2 x$
$x+y=12$

3
$y=2 x-5$
$4 x-y=7$

5

$$
\begin{aligned}
& y=-x+5 \\
& x-4 y=10
\end{aligned}
$$

$8 \quad 6 x+4=y$
$2 x+2 y=15$
$5 x-3 y=-11$
$x=2+2 y$
$7 \quad-2 x+3 y=14$
$x+2 y=7$
$2 x=3 y-1$
$x+2 y=9$
$42 x-3 y=12$
$x=4 y+1$

$$
x+2 y=1
$$

$9 \quad x+y=1$
$2 x-y=-2$

ANSWERS	
$\left(\frac{1}{2},-3\right)$	ER
$\left(8,-\frac{1}{2}\right)$	TE
$\left(-\frac{1}{3}, \frac{4}{3}\right)$	IG
$(-3,4)$	ST
$\left(\frac{1}{2}, 7\right)$	EN
$\left(\frac{5}{2}, \frac{4}{3}\right)$	EX
$(-1,4) \quad \mathrm{TH}$	
$(-4,-3) \quad \mathrm{HT}$	
$\left(\frac{1}{2},-3\right) \quad E R$	
$\left(8,-\frac{1}{2}\right) \quad T E$	
$\left(-\frac{1}{3}, \frac{4}{3}\right) \quad I G$	
$(-3,4) \quad$ ST	
$\left(\frac{1}{2}, 7\right) \quad \mathrm{EN}$	
$\left(\frac{5}{2}, \frac{4}{3}\right) \quad E X$	
(-1, 4) TH	
$\left(\frac{5}{2},-\frac{1}{2}\right)<\mathrm{MA}$	
$(-4,-3)$	

Now complete Page 425 \#4, 5

