What is a system of equations?

A set of 2 or more equations that share a common solution

If our system is made up of 2 linear equations it could have 1 solution

This solution will consist of an **x** and **y** value

General rule - 2 variables require 2 equations, 3 variables require 3 equations etc.

Everything changes if your equations contain exponents (equations are no longer linear)

How to solve a system (Method 1)

2) Why could this system have more than 1 solution $y = -3x^2 + 5$ y = 2x + 1 $y = -3x^2 + 5$ is not a line!

If slopes are different

if slopes are equal

if lines are the same

5) Without graphing, how many solutions will the following systems have?

y = 6x + 19y = 5x - 10 b) c) y = 8x + 7a) y = 6x - 4y = 8x - 4y = -2x + 8both have m = 6different slopes different slopes $m_1 = 5 m_2 = 8$ $m_1 = 8 m_2 = -2$ **0** solutions 1 solution 1 solution d) y = 18x + 10y = -2x + 10e) $\frac{1}{2} y = 9x + 5$ y = ½ x +10 Multiple bottom equation by 2 perpendicular slopes ≠ And it becomes y = 18x + 10**1** solution

Same lines = æ solutions

Assignment = worksheet

Intro to systems (Graphing Techniques)

What were the headlines after a mad scientist trained 2 eggs to attack a candy store with sharp sticks? (hint - use a ruler, hit your points dead-on!)

ΤW	EG	OS	GS	WE	ET	SP	TR
(-4, 0)	(-4, -5)	no solution	(4, 1)	(3, 1)	(-2, -4)	(-1, 6)	3, -11
EA	TS	RA	TI	MI	SS	NT	UP
(-3, 5)	(1, 2)	(0, 3)	(2, -3)	(4, -3)	(5, -2)	(-1, 0)	(-2, 2)
1 $y = \frac{2}{3}$	x-1	2	y = -2x +	1	3	$y=\frac{1}{2}x-3$	

x

$$1 \qquad y = \frac{2}{3}x - 1$$

y = -x + 4

y = x - 5Y

y = 2x4 x + y = 3

x + y = 03x + y = -4

5

Flip for last 2 questions ...

7 x + 2y = -44y = 3x + 12 8 y = -22x - 5y = 20

- 2) Without graphing determine if the following systems will have 0, 1 or infinite solutions
- a) y = 8x + 10y = 3x - 4b) y = -4x - 10y = -4x - 4c) y = 12x + 7y = -12x + 1
- d) y = 7x + 10e) 5x + y = 10f) 16x y = 182y = 14x + 205x + y = 19-16x + y = 0
- g) y = 2x 1h) -6x + y = 10i) 20x y = 184y = 2x + 206x + y = 19-20x + y = 7

Page 409			
3a)	Ь)	с)	d)
4a)		b)	