Intro to systems of equations

What is a system of equations?
A set of 2 or more equations that share a common solution
If our system is made up of 2 linear equations it could have 1 solution
This solution will consist of an x and y value
General rule - 2 variables require 2 equations, 3 variables require 3 equations etc.
Everything changes if your equations contain exponents (equations are no longer linear) How to solve a system (Method 1)
a) $2 x-3 y=12$ x int $=6, y$ int $=-4$

$$
x+3 y=-3
$$

Solution to system: (2.5, -2.2)
Check: 2(2.5) - 3(-2.2) = 11.6 .. not too bad
b) $y=3 x-4$

$$
y \text { int }=-4, m=3
$$

$$
y=\frac{-1 x}{3}+3
$$

Solution to system: (2.1, 2.3)
Check: 3(2.1)-4 = 2.3 .. nice!
2) Why could this system have more than 1 solution $y=-3 x^{2}+5$
$y=2 x+1 \quad y=-3 x^{2}+5$ is not a line!
3) How many solutions do the following systems have?

4) So how many solutions can a linear system have?

If slopes are different

5 solutions

if lines are the same
5) Without graphing, how many solutions will the following systems have?

$$
\text { a) } \quad \begin{aligned}
& y=6 x+19 \\
& y=6 x-4
\end{aligned}
$$

both have $m=6$
0 solutions
b) $y=5 x-10$
$y=8 x-4$
different slopes
$m_{1}=5 m_{2}=8$
1 solution
c) $\begin{aligned} y & =8 x+7 \\ y & =-2 x+8\end{aligned}$
different slopes $m_{1}=8 \quad m_{2}=-2$
1 solution

$$
\text { d) } \quad \begin{aligned}
& y=18 x+10 \\
& 1 / 2 y=9 x+5
\end{aligned}
$$

Multiple bottom equation by 2 And it becomes $y=18 x+10$
e) $y=-2 x+10$
$y=1 / 2 x+10$

Same lines $=\infty$ solutions

Assignment = worksheet

Intro to systems (Graphing Techniques)

What were the headlines after a mad scientist trained 2 eggs to attack a candy store with sharp sticks? (hint - use a ruler, hit your points dead-on!)

$\begin{gathered} \text { TW } \\ (-4,0) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{EG} \\ (-4,-5) \\ \hline \end{gathered}$	OS no solution	GS $(4,1)$	WE $(3,1)$	$\begin{gathered} E T \\ (-2,-4) \end{gathered}$	$\begin{gathered} \mathrm{SP} \\ (-1,6) \end{gathered}$	
$\begin{gathered} E A \\ (-3,5) \\ \hline \end{gathered}$	$\begin{gathered} \text { TS } \\ (1,2) \end{gathered}$	$\begin{gathered} \text { RA } \\ (0,3) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{TI} \\ (2,-3) \end{gathered}$	$\begin{gathered} \mathrm{MI} \\ (4,-3) \end{gathered}$	$\begin{gathered} \mathrm{SS} \\ (5,-2) \end{gathered}$	$\begin{gathered} \text { NT } \\ (-1,0) \end{gathered}$	$\begin{gathered} \text { UP } \\ (-2,2) \end{gathered}$

$1 \begin{aligned} & y=\frac{2}{3} x-1 \\ & y=-x+4\end{aligned}$

$$
y=-x+4
$$

$4 y=2 x$
$x+y=3$

Flip for last 2 questions ...
$2 y=-2 x+1$
$y=x-5$

$5 x+y=0$
$3 x+y=-4$

$3 \quad \begin{array}{r}y=\frac{1}{2} x-3 \\ y\end{array}=\frac{3}{2} x-1$

$6 x=3-3 y$
$x+3 y=-6$

7

$$
\begin{aligned}
& x+2 y=-4 \\
& 4 y=3 x+12
\end{aligned}
$$

$8 y=-2$
$2 x-5 y=20$

2) Without graphing determine if the following systems will have 0,1 or infinite solutions
a) $\begin{aligned} y & =8 x+10 \\ y & =3 x-4\end{aligned}$
d) $y=7 x+10$
$2 y=14 x+20$
g) $y=2 x-1$
$4 y=2 x+20$
b) $y=-4 x-10$
$y=-4 x-4$
e) $5 x+y=10$
$5 x+y=19$
h) $-6 x+y=10$
$6 x+y=19$
c) $y=12 x+7$
$y=-12 x+1$
f) $16 x-y=18$
$-16 x+y=0$
i) $20 x-y=18$
$-20 x+y=7$

Page 409
3a)
b)
c)
d)

4a)
b)

