Look at the graph of $y=x$.
The line divides the plane into two half-planes:

- $y<x$ is the region below the line.
- $y>x$ is the region above the line.
- $y=x$ is the boundary line.

A solid boundary line is used to represent \leq or \geq.
A dotted boundary line is used to represent $<$ or $>$.

To graph an inequality:

1. Graph the boundary line.
2. Pick a point not on the line and substitute it into the inequality.
3. If the inequality is satisfied, shade the region containing the point. If not, shade the other region.
(1) Example 1: Graph $4 x-5 y<20$.
(1)

$$
\begin{array}{ll}
4 x-5 y=20 & \\
-4 x \\
\frac{-5 y}{-5}=\frac{-4 x}{-5}+\frac{20}{-5} & \\
y=\frac{4}{5} x-4 & \text { dotted } \\
\text { line }
\end{array}
$$

(2) Test point $(0,0)$

$$
\begin{gathered}
4(0)-5(0)<20 ? \\
0-0
\end{gathered}
$$

0
<20
(3) since $(0,0)$ satisfies the inequality, we shade the region including $(0,0)$.

Example 2: Graph $2 x-5 y \geq 10$.
(1)

$$
\begin{aligned}
& 2 x-5 y=10 \\
& -2 x \quad-2 x \\
& \frac{-5 y=-2 x+10}{-5}=-5 \\
& y=\frac{2}{5} x-2
\end{aligned}
$$

(2) Test pt. $(0,0)$
$2(0)-5(0) \geq 10$?

$$
0-0 \geq 10
$$

$$
0 \geq 10
$$

不
Solid

Example 3: Graph the solution set for each linear inequality on a Cartesian plane:
(3) shade opposite region
(1)

$$
\begin{gathered}
x-3=0 \\
x=3
\end{gathered}
$$

(2) Test p+ $(0,0)$

$$
\begin{aligned}
& 0-3>0 ? \\
& -3>0 \quad X
\end{aligned}
$$

dotted
b. $\quad(x, y)-3 y+9 \geq-3+y$
(1)

$$
\begin{gathered}
-3 y+9=-3+y \\
-y \\
-4 y+9=-3 \\
-9 \\
\frac{-4 y}{-4}=\frac{-12}{-4} \\
y=3
\end{gathered}
$$

solid.
(2) Test p+ $(0,0)$

$$
\begin{gathered}
-3(0)+9 \geq-3+(0) \\
0+9 \geq-3 \\
9 \geq-3
\end{gathered}
$$

Solid

$$
R=\text { real }
$$ number

a. $\{(x, y) x-3>0, x \in R, y \in R\}$

Example 4: Write an inequality to represent the graph:
(1) Boundary Line $y=m_{\uparrow} x+b$
a.

$$
y=\frac{1}{2} x+2
$$

(2)
$y \square \frac{1}{2} x+2$

$$
y \leq \frac{1}{2} x+2
$$

from the 1 .

- $\square \frac{1}{2}(0)+2$

0 $\square 0+2$

012
b.

(1)B.L.

$$
y=1
$$

(2) $y \square 1$
$3 \square 1$
$3 \geq 1$
c.

(1) B.L. $\quad y=m_{\uparrow} x+\underset{\uparrow}{b}$

$$
-\frac{2}{1} \quad-3
$$

$$
y=-2 x-3
$$

(2) $y \square-2 x-3$
$(-3,-4)-4 \square-2(-3)-3$ $-4 \square 6-3$
$-4 \square^{3}$
HF: P. 303 \# 2, 5 acdf

Example 5: Ben is buying snacks for his friends. He has $\$ 10.00$. The choices are apples for $\$ 0.80$ and muffins for $\$ 1.25$.
a) Write an inequality in two variables to model this situation. Define your variables.

Let $x=$ \# of apples

$$
0.8 x+1.25 y \leq 10
$$

$$
y=\# \text { of muffins }
$$

b) State the restrictions on the variables.
(W means whole numbers.)
x has to be whole \#. y has to be whole \#.
c) Graph the inequality. includes

$$
\begin{array}{cc}
0.8 x+1.25 y \leq 10 \\
\frac{x \text {-int }}{y=0)} & \frac{y \text {-int }}{(x=0)} \\
0.8 x+1.25(0)=10 & 0.8(0)+1.25 y=10 \\
0.8 x=10 & 1.25 y=10 \\
x=12.5 & y=8
\end{array}
$$

d) Why is $(5,4.8)$ not a solution?

Not a soil bic you cannot buy 4.8 muffins

