2 triangle Problems

For our final trig lesson we will look at problems involving more than 1 triangle

- We will always try to find a shared side or shared angle so that info in one triangle can be used in the other

1) Find angle MAH

36
We need AH $\cos 40^{\circ}=\frac{19}{A H} \quad A H=24.8$
Now to find MAH we have 2 sides in the left triangle: $\quad \tan \theta=\frac{36}{24.8} \quad \theta=55.4^{\circ}$
2) Find the distance between the contact points of the wires

Using $40^{\circ} \quad$ tan $40^{\circ}=\frac{\text { tower }}{87} \quad$ tower $=73.0 f t$
Using $25^{\circ} \quad \tan 25^{\circ}=\frac{\text { base }}{87} \quad$ base $=40.57 \mathrm{ft}$

$$
X=32.43 \mathrm{ft}
$$

3a) How tall is the tower?

Add red line to create right triangle
Using $67^{\circ} \quad \cos 67^{\circ}=\frac{\text { base }}{165} \quad$ base $=64.47$

Using $67^{\circ} \quad \sin 67^{\circ}=\frac{\text { hill }}{165} \quad$ hill $=151.88$

Using $67+16^{\circ} \quad$ tan $83^{\circ}=\frac{\text { total }}{64.47}$
total $=525.06$
Tower $=373.2 \mathrm{~m}$
b) How long is the wire?

Since we have total $h \quad \sin 83^{\circ}=\frac{525.06}{\text { wire }}$
Wire $=529$ m
4)

Find angle TRI

This is not a right-angle triangle So, we will create one

To find TRI we can add up the 2 angles At the top, or find I and then add up Δ

Start by finding the new dotted line (opp) $\sin 55^{\circ}=\frac{o p p}{15} \quad$ opp $=12.287$

Now: $\sin I^{\circ}=\frac{12,87}{27} \quad I=28.46^{\circ} \quad T R I=180^{\circ}-55^{\circ}-28.46^{\circ} \quad T R I=96.5^{\circ}$
5)

Jungle Gym with Bars to be Added

Find the length of the diagonal dashed bar
This is 2 right triangles
A triangle on the ground (using 2 and 4)
A triangle standing up (using 3 and hypotenuse of the above Δ)
6) TRICKY Problem: Find the height of the airplane

Problem:
we don't know sides of the small Δ 's
We will split 20 into x and 20- x

So: $\quad \sin 15^{\circ}=\frac{h}{x} \quad$ and $\sin 35^{\circ}=\frac{h}{20-x} \quad x \sin 15^{\circ}=h$ and $(20-x) \sin 35^{\circ}=h$
But h is the same for both: $\quad x \sin 15^{\circ}=(20-x) \sin 35^{\circ}$

$$
\begin{array}{ll}
x(0.2588)=11.472-x(0.5736) & x(0.8324)=11.472 \\
& x=13.78
\end{array}
$$

Which means: $\quad \sin 15^{\circ}=\frac{h}{13.78} \quad h=3.57$ miles $\quad(5.75 \mathrm{~km})$

$$
\text { Assignment = Page } 118 \text { \# 3(a), 4(a), 5(a) , 8, 9, 11, 12, 13, } 14
$$

