FOB 11

Since there are many different possible curves with different values of μ and σ, we can standardize the curve by transforming each score into a z-score (a measure of how many standard deviations a value is from the mean).

Standard Normal Distributions can be used in every problem for any data values.
Properties of a Standard Normal Distribution:

- Mean is 0 .
- Standard Deviation is 1 .
- Area under the curve is equal to 1 .
- The graph is symmetrical about the mean.
- We use \mathbf{z} instead of \mathbf{x} to represent numbers along the horizontal axis.

$$
z=\frac{x-\mu}{\sigma} \quad z=\frac{\text { term -mean }}{\text { standard deviation }}
$$

- $A(z)$ is the area under the curve to the left of z.
- We can find the areas by using a graphing calculator or a z-table.

Example 1: If IQ scores are normally distributed with a mean of 100 and standard deviation of 15, determine:
a. the z -score for 120 .

$$
z=\frac{x-\mu}{\sigma}=\frac{120-100}{15}=1.33
$$

b. the probability that a randomly selected person has an IQ less than 120.

Find Area under the graph to left of $120 \quad A(z)$

$$
\begin{aligned}
& z=1.33 \\
& A(1.33) \text { find in } z \text {-tables pg } 592-593 \\
& A(1.33)=0.9082 \\
&=90.82 \% \text { probability }
\end{aligned}
$$

Example 2: The GPA at GW Graham Secondary is 2.6, with a standard deviation of 0.5. If the top 10% of all students are eligible to attend UBC, what is the minimum GPA

* Remember z-score tables give area to left of z.

Find value that gives area to left of 90% (or closest to)

$$
A(z)=0.9000 ?
$$

Closest $A(1.28)=0.8997$

$$
\begin{aligned}
z & =1.28 \\
z=\frac{x-\mu}{\sigma} 0.5(1.28) & =\left(\frac{x-2.6}{0.5}\right) 25 \\
0.64 & =x-2.6 \\
3.24 & =x \text { minimum }
\end{aligned}
$$

Example 3: At a high school, the average grade for Science is 66 , with a standard deviation of 10. If 20 students with grades between 73 and 85 receive B's, how many students are taking Science at the high school?

$$
97.13-75.8=21.33 \%
$$

$$
\frac{20 \text { students }}{x}=\frac{0.2133}{1}
$$

$$
=0.7
$$

Percent between $73 \$ 85$

$$
A(1.9)-A(0.7)
$$

$$
\begin{aligned}
& A(1.9)=0.9713=97.13 \% \\
& A(0.7)=0.7580=75.8 \%
\end{aligned}
$$

$$
x=93.765
$$

94 students take science.

OMIT

Example 4: A manufacturer of cell phones has determined a mean of 26 months before a need of repairs, with a standard deviation of 6 months. What length of time for this warranty should the manufacturer set so that less than 10% of all cell phones will need repairs during the warranty period?

Assignment. P_{8}.264- $2-7(20), 8,9,11,13-15,11,20$

HW p. 264 \# 5-7 (ac) $8,9,11,15,17$

