Sine and Cosine

The ratios shown only apply for angle A If we start at B then - the opposite and adjacent switch

$$sin A = \frac{15}{17} but sin B = \frac{8}{17}$$

1)

SOHCAHTOA

19 hyp
$$\sin 33^\circ = \frac{t}{19}$$
 19 $\sin 33^\circ = t$ $t = 10.3$

$$t = 10.3$$

$$\cos 67^{\circ} = \frac{r}{77.2}$$
 77.2 $\cos 67^{\circ} = r$ $r = 30.2$

$$sin 60^{\circ} = \frac{55.6}{i}$$
 $i = \frac{55.6}{sin 60^{\circ}}$ $i = 64.2$

$$i = \frac{55.6}{\sin 60^{\circ}}$$

$$cos 57^{\circ} = \frac{99.2}{g}$$
 $g = \frac{99.2}{cos 57^{\circ}}$ $g = 182.1$

$$g = \frac{99.2}{\cos 57^{\circ}}$$

When finding angles ... we can sometimes get an error when using sine or cosine

$$sin I = \frac{8}{7}$$
 I = error

$$Cos S = \frac{10}{3}$$
 $S = error$

$$sin\ I = \frac{8}{7}$$
 $I = error$ $Cos\ S = \frac{10}{3}$ $S = error$ $Tan\ A = \frac{10}{3}$ $A = 73.3^{\circ}$

Since sine and cosine use the hypotenuse ... they must be ≤ 1 . Why?

Notice the ratios shown have an opposite (or adjacent) bigger than the hypotenuse 😕

2) Finding angles

$$\cos W^{\circ} = \frac{77}{91}$$

$$\cos W^{\circ} = \frac{77}{91}$$
 $W = 2^{nd} \cos (\frac{77}{91})$

b)

$$Sin\ E^{\circ} = \frac{17.2}{22}$$
 $E = 2^{nd} \sin\left(\frac{17.2}{22}\right)$ $E = 51.4^{\circ}$

$$E = 2^{nd} \sin(\frac{17.2}{22})$$

$$E = 51.4^{\circ}$$

$$\cos S^{\circ} = \frac{4.5}{7.7}$$

7.7 hyp
$$\cos S^{\circ} = \frac{4.5}{7.7}$$
 $S = 2^{nd} \cos \left(\frac{4.5}{7.7}\right)$ $S = 54.2^{\circ}$

Find the missing sides in the triangle 3)

I decided to solve using 75° first ... so that forces 50.3 = adjacent

$$\cos 75^{\circ} = \frac{50.3}{u}$$
 $u = \frac{50.3}{\cos 75}$

Now I could use Pythagoras but $tan 75^{\circ} = \frac{m}{50.3}$

$$tan 75^{\circ} = \frac{m}{50.3}$$

$$m = 187.7$$

Assignment = worksheet

The Sine and Cosine Ratio

Find x (or y) using sine accurate to 1 decimal place 1)

a)

b)

c)

e)

f)

h)

Find x (or y) using cosine accurate to 1 decimal place 2)

a)

e)

f)

g)

h)

3) Solve accurate to at least 1 decimal place

d)

4) Find θ accurate to at least 1 decimal place

d)

How far from a wall must the foot of a 15 m ladder be placed to make a safe angle of 75° with the ground?

from the top of a tower to the ground. The cable makes an angle of 59° with the ground. Calculate the height of the tower.

A support cable 40 m long runs from the long runs.

Cable Cable Cable for the formula for the long runs from the long