The Trig Ratios

- Every right triangle has 2 legs and a hypotenuse.
- The legs are called the opposite and adjacent.
- The angle that you start at determines the opposite and adjacent
- From these ... we can create the 3 primary trig ratios

The hypotenuse doesn't change But the legs get renamed depending on starting angle

So, using the triangle below - we can produce the following ratios

Notice how the ratios are related for the following triangle (we will start from A)
 $\sin A=\frac{10}{26}$
$\cos A=\frac{24}{26}$
$\operatorname{Tan} A=\frac{10}{24}$
but if we start from B... 24 is the opposite $\sin B=\frac{\mathbf{2 4}}{26} \quad \cos B=\frac{10}{26} \quad$ Tan $B=\frac{24}{10}$

Write the exact trig ratios for the following triangles
a)

For angle C

$$
\sin C=\frac{4}{5} \quad \cos C=\frac{3}{5} \quad \text { Tan } C=\frac{4}{3}
$$

Opp
b)

$\sin \theta=\frac{5}{13} \quad \cos \theta=\frac{12}{13} \quad \operatorname{Tan} \theta=\frac{5}{12}$
c)

Here we are missing a side ... find it first

$$
3^{2}+6^{2}=h^{2} \quad h=\sqrt{45} \text { or } 3 \sqrt{5}
$$

$\sin \theta=\frac{3}{3 \sqrt{5}}$ or $\frac{1}{\sqrt{5}} \quad \cos \theta=\frac{6}{3 \sqrt{5}}$ or $\frac{2}{\sqrt{5}} \quad \operatorname{Tan} \theta=\frac{3}{6}$ or $\frac{1}{2}$
d)

$100^{2}+7^{2}=h^{2}$	$h=\sqrt{149}$
7 cm adj	
$\sin W=\frac{10}{\sqrt{149}}$	$\cos W=\frac{7}{\sqrt{149}} \quad$ Tan $W=\frac{10}{7}$

$$
13^{2}-8^{2}=0^{2} \quad 0=\sqrt{105}
$$

$$
\sin \theta=\frac{\sqrt{105}}{13} \quad \cos \theta=\frac{8}{13} \quad \operatorname{Tan} \theta=\frac{\sqrt{105}}{8}
$$

Notice if you use your calculator for any ratio - you can solve for the angle

$$
2^{n d} \sin \left(\frac{\sqrt{105}}{13}\right)=52.0^{\circ} \text { and } 2^{n d} \cos \left(\frac{8}{13}\right)=52.0^{\circ}
$$

Assignment = worksheet

Why did Klutz lift off the manhole cover and dive in?

3	10	22	8	14	21	4	7	18	1	9	20	6	11	16	19	13	23	2	15	24	12	17	5

(1) $\sin A$
(E) $\frac{12}{13}$
(1) $\frac{5}{13}$
(2) $\cos A$
(3) $\tan A$
(H) $\frac{5}{12}$
(v) $\frac{13}{5}$

(4) $\sin B$
(N) $\frac{13}{5}$
(E) $\frac{5}{13}$
(5) $\cos B$
(6) $\tan B$
($) \frac{12}{13}$
(1) $\frac{12}{5}$

(7) $\sin A$
(8) $\cos \mathrm{A}$
(9) $\tan A$
(S) 2
(T) $\frac{1}{\sqrt{3}}$

(10) $\sin B$
(11) $\cos B$
(12) $\tan B$
(A) $\frac{\sqrt{3}}{2}$
(M) $\frac{1}{2}$
(1) $\sqrt{3}$
(N) $\frac{1}{2}$
(E) $\frac{\sqrt{3}}{2}$
(P) $\frac{1}{\sqrt{3}}$

(13) $\sin A$
(U) $\frac{5}{3}$
(5) $\frac{3}{5}$
(B) $\frac{4}{3}$
(E) $\frac{4}{5}$

(16) $\sin B$
(D) $\frac{3}{\sqrt{58}}$
(B) $\frac{3}{7}$
(17) $\cos \mathrm{B}$
(18) $\tan B$
(G) $\frac{7}{\sqrt{58}}$
(M) $\frac{7}{3}$
(19) $\sin A$
(20) $\cos A$
(24) $\tan A$
(T) $\frac{15}{17}$
(S) $\frac{8}{17}$
(B) $\frac{17}{8}$
(C) $\frac{8}{15}$

(22) $\sin A$
(iV) $\frac{1}{\sqrt{2}}$
(iV) $\frac{1}{\sqrt{2}}$
(C) 1
(L) $\sqrt{2}$

(23) $\cos A$
(24) $\tan \mathrm{A}$

Find the unknown side and then write the exact ratios for the $\sin \theta, \cos \theta$ and $\tan \theta$.
a)
$\sin \theta=$
$\cos \theta=$
$\tan \theta=$
b)

$\sin \theta=$
$\cos \theta=$
$\tan \theta=$

c) $\sin \theta=$
$\cos \theta=$ $\tan \theta=$
 $\tan \theta=$

e)
$\sin \theta=$
$\cos \theta=$
$\tan \theta=$

f)
$\sin \theta=$
$\cos \theta=$
$\tan \theta=$

h)
$\sin \theta=$
$\cos \theta=$
$\tan \theta=$

i)
$\sin \theta=$
$\cos \theta=$
$\tan \theta=$

k)
$\sin \theta=$
$\cos \theta=$ $\tan \theta=$

Use your calculator so find θ in:
e)
f)
g)
h)
i)
j)
k)
I)

