A quick review of Pythagorean theorem : $\quad a^{2}+b^{2}=c^{2} \quad(l e g)^{2}+(l e g)^{2}=(h y p o t e n u s e)^{2}$
Find x in the following accurate to at least 1 decimal place

1a)

Here we know the legs
$100^{2}+105^{2}=x^{2}$
$21025=x^{2}$ so $x=145$
b)

we know hypotenuse
$48.7^{2}-32^{2}=x^{2}$
$1347.69=x^{2} \quad x=36.7$
c)

we know hypotenuse

$$
20^{2}-14^{2}=x^{2}
$$

$$
204=x^{2} \quad x=14.28
$$

Find the distance between 2 points

Given the points (-4, -1) and (5, 6)
Find the distance between

We can make a triangle First look x distance

9 spaces

$$
y \text {-distance }
$$

$$
7 \text { spaces }
$$

So distance $9^{2}+7^{2}=d^{2} \quad d=\sqrt{130}$ or 11.4

But I don't want to have to draw a diagram each time
Where did the 9 come from ...difference in x^{\prime} s: (5-4)
Where did the 7 come from ...difference in y's: (6--1)
which then went into Pythagoras

$$
\text { Distance formula: } d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Could we find the point in the exact middle of the distance line?
Yes - its an average of the points that created the distance

Midpoint formula: $\quad\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)$
2) Find the exact distance and midpoint between
a) $(12,10)$ and ($-3,-2$)
$d=\sqrt{(-3-12)^{2}+(-2-10)^{2}} \quad d=\sqrt{(-15)^{2}+(-12)^{2}} \quad d=\sqrt{369}$ or $3 \sqrt{41}$
Mid-pt: $\quad\left(\frac{-3+12}{2}, \frac{-2+10}{2}\right) \rightarrow\left(\frac{9}{2}, 4\right)$
b) $(-4,-3)$ and $(7,-11)$
$d=\sqrt{(7--4)^{2}+(-11--3)^{2}} \quad d=\sqrt{(11)^{2}+(-8)^{2}} \quad d=\sqrt{185}$
Mid-pt: $\quad\left(\frac{7+-4}{2}, \frac{-11+-3}{2}\right) \rightarrow\left(\frac{3}{2},-4\right)$
As we are about to start trigonometry ... we must be comfortable using our calculators
Step 1: \quad make sure calculator is in degree mode
You might have a DRG button, or a mode setting
If in degrees a D or DEG should be visible on your screen

Step 2: Is it a forwards or backwards calculator
Type in: $\quad \sin 60=$ if you get 0.8660 you type things as you see them
Or 60 sin if this produces 0.8660 , you have a backwards calculator

Try to produce the following:
$\operatorname{Sin} 15^{\circ}=$ $\cos 56^{\circ}=$ $\tan 32^{\circ}=$
0.2588
0.5592
0.6249

The opposite:

When you see a statement like: $\sin A=0.23$
You need to used your $2^{\text {nd }}$ or \quad inv button $\quad 2^{\text {nd }} \sin 0.23=13.297$
Or $0.232^{\text {nd }} \sin$
Try solving:

$$
\begin{array}{rrr}
\operatorname{Sin} A=0.66 & \cos B=0.445 & \tan C=1.58 \\
A=41.3 & B=63.6 & C=57.67
\end{array}
$$

Pythagoras, Distance and Using your calc too ()

How do you write a song that will knock over a cow? (cross out answers - remaining = joke!)

BY	IN	SO	TH	BE		
$\sqrt{7200} \mathrm{ft}$	$\sqrt{123} \mathrm{~m}$	$\sqrt{105} \mathrm{~m}$	$\sqrt{675} \mathrm{~cm}$	AT $\sqrt{6400} \mathrm{ft}$ $\sqrt{975} \mathrm{~m}$	ER $\sqrt{149} \mathrm{~cm}$ $\doteq 84.9 \mathrm{ft}$	$\doteq 11.1 \mathrm{~m}$
$\doteq 10.2 \mathrm{~m}$	$\doteq 26.0 \mathrm{~cm}$	$=80 \mathrm{ft}$	$\doteq 31.2 \mathrm{~m}$	$\doteq 12.2 \mathrm{~cm}$		
EF	OR	NG	FL	IT	BE	AT
$\sqrt{850} \mathrm{~m}$	$\sqrt{336} \mathrm{ft}$	$\sqrt{157} \mathrm{~m}$	$\sqrt{425} \mathrm{~cm}$	$\sqrt{1} \mathrm{~m}$	$\sqrt{400} \mathrm{in}$.	$\sqrt{380} \mathrm{in}$.
$\doteq 29.2 \mathrm{~m}$	$\doteq 18.3 \mathrm{ft}$	$\doteq 12.5 \mathrm{~m}$	$\doteq 20.6 \mathrm{~cm}$	$=1 \mathrm{~m}$	$=20 \mathrm{in}$.	$\doteq 19.5 \mathrm{in}$.

(1) For each right triangle, find the length of the side that is not given:
$\underbrace{3}_{11 \mathrm{~m}}$

C

(4) A $\mathbf{2 0}$ foot ladder is leaned against a wall. If the base of the ladder is 8 feet from the wall, how far up the wall will the ladder reach?
(3) Each side of an equilateral triangle measures 30 cm . Find the length of an altitude, a, of the triangle.

(7) Jack has let out 40 m of kite string when he observes that his kite is directly above Jill. If Jack is 25 m from Jill, how high is the kite?

(6) A television set may be described in terms of the diagonal measure of its screen. If the TV screen is 16 inches by 12 inches, what is the length of the diagonal?

Use you calculate to evaluate the following accurate to 4 decimal places
a) $\sin 20^{\circ}$
b) $\cos 40^{\circ}$
c) $\tan 52^{\circ}$
d) $\tan 12^{\circ}$
e) $\sin 82^{\circ}$
f) $\quad \tan 48^{\circ}$
g) $\sin 35^{\circ}$
h) $\quad \cos 54^{\circ}$
i) $\quad \cos 4^{\circ}$
j) $\quad \sin 8^{\circ}$

Use you calculate to solve the following accurate to 1 decimal place
a) $\operatorname{Sin} A=1 / 2$
b) $\quad \cos A=3 / 4$
c) $\tan A=2 / 3$
d) $\quad \operatorname{Cos} A=7 / 8$
e) $\quad \cos A=4 / 5$
f) $\sin B=4 / 5$ g) $\cos B=1 / 5$ h) $\tan B=5 / 6$ i) $\sin B=1 / 6$ j) $\cos B=5 / 8$

Find the exact distance between the given points
a) $(3,-5)$ and $(-6,7)$
b) $(-1,2)$ and $(-6,-3)$
c) $(3,0)$ and $(4,-1)$
d) (8.1, 3.7) and (3.2, -5.4)
e) $(13,6)$ and $(-3,7)$

Find the midpoint between the given points
a) $(3,-5)$ and $(-6,7)$
b) $(-1,2)$ and $(-6,-3)$
c) $(3,0)$ and $(4,-1)$
f) $(2,-4)$ and $(-3,5)$
d) (8.1, 3.7) and (3.2, -5.4)

Determine if $P(4,2), E(-2,-2)$ and $N(2,-8)$ are the vertices of an isosceles Δ.

