Factoring Special Binomials

Consider a 2-term expression such as $x^{2}-9$
This could be written as $x^{2}+0 x-9$
So, we would need 2 numbers that multiply to -9 but add to 0
The only numbers that add to zero are the number and the negative of itself $3,-36,-6$ etc
$x^{2}-9 \rightarrow \quad(x-3)(x+3) \quad$ This is called a "difference of squares"
If you encounter a 2 term expressions, they could be:

1) GCF
2) Difference of Squares
3) both of these

Factor the following:
a) $x^{2}-25$

$$
\sqrt{25}=5 \quad \rightarrow \quad(x-5)(x+5)
$$

b) $x^{2}-1296$

$$
\sqrt{1296}=36 \quad \rightarrow \quad(x-36)(x+36)
$$

c) $16 x^{2}-1$

$$
\sqrt{16}=4, \sqrt{1}=1 \quad \rightarrow \quad(4 x-1)(4 x+1)
$$

d) $9 x^{2}-169 y^{4}$

$$
\sqrt{9}=3, \sqrt{169}=13 \quad \rightarrow \quad\left(3 x-13 y^{2}\right)\left(3 x+13 y^{2}\right)
$$

e) $x^{2}+49$

$$
\text { Not possible } 7+-7=0,7 x-7=-49 \quad(7+7=14) \text { No\#'s exist }
$$

f) $144 x-16$

$$
\text { No squares ... just a GCF of } 16 \rightarrow \quad 16(9 x-1)
$$

g) $x^{6}-9 b^{14}$

$$
\sqrt{9}=3 \quad \rightarrow \quad\left(x^{3}-3 b^{7}\right)\left(x^{3}+3 b^{7}\right)
$$

h) $x^{4}-16$

Wait a minute
Get funky ...
i) $\quad(x-6)^{2}-(x+5)^{2}$

$$
[(x-6)-(x-5)][(x-6)+(x-5)] \quad \rightarrow \quad(-1)(2 x-11)
$$

Difference of Squares Worksheet

Why didn't Klutz do ant homework on Saturday?

$1349 a^{2}-1$
$6 \quad a^{2}-25$

