Factoring using Decomposition ($a x^{2}+b x+c$)
Suppose your trinomial has a number in front of the x^{2} (that is NOT a GCF)
Then this number needs to be part of the expansion and part of the brackets
We use a method called factoring by decomp to handle this

Step 1: multiply first and last (2 x 5)
Step 2: find 2 numbers that multiply to this and add to middle (in this case 10×1)
Step 3: decompose the middle term using these 2 numbers
(notice I still put the big \# first)
Step 4: factor GCF from first 2 and last 2 terms
(notice ... if the brackets are the same you did it correctly)
Step 5: factor new GCF and state answer
Answer: $(x+5)(2 x-1)$

It looks like a lot of work ... but the built-in check step makes it worth the effort ..
Factor the following
a) $9 x^{2}-15 x+4$

12×3 works

$$
\begin{aligned}
& 9 x^{2}-12 x-3 x+4 \\
& 3 x(3 x-4)-1(3 x-4) \quad \text { Answer: }(3 x-4)(3 x-1)
\end{aligned}
$$

b) $8 x^{2}-10 x-3$

12×2 works

$$
\begin{aligned}
& 8 x^{2}-12 x+2 x-3 \\
& 4 x(2 x-3)+1(2 x-3) \quad \text { Answer: }(2 x-3)(4 x+1)
\end{aligned}
$$

c) $18 x^{2}-7 x-1$

$9 x 2$ works $\quad 18 x^{2}-9 x+2 x-1$

$$
9 x(2 x-1)+1(2 x-1) \quad \text { Answer: }(2 x-1)(9 x+1)
$$

10)

9×8 works

$$
\begin{aligned}
& 24 x^{2}-9 x y+8 x y-3 y^{2} \\
& 3 x(8 x-3 y)+y(8 x-3 y) \quad \text { Answer: }(8 x-3 y)(3 x+y)
\end{aligned}
$$

Factoring $a x^{2}+b x+c$
What do you call drawing squares on Dracula?

$103 m^{2}-m-30$
State 2 integers for the \square so that the question can be factored
a) $x^{2}+\square x-10$
b) $3 x^{2}-\square x+10$

