Factoring Trinomials \#1

Looking back at expanding: $\quad(x+a)(x+b)$

$$
\begin{aligned}
& x^{2}+b x+a x+a b \\
& =x^{2}+(b+a)+a b
\end{aligned}
$$

Notice the middle term is the sum of a and b and the last term is a product of a and b
Factoring is the opposite of expanding ... so we will re-create the brackets (we will be given $x^{2}+B x+C$ and need to create ($x+$?)($x+$?)

We will use the rule: find 2 numbers that multiply to C and add to B

Factor the following

a) $x^{2}+7 x+10$

b) $x^{2}+7 x-30$

 need 2 \#'s that multiply to $30(15 x 2)(10 x 3)(6 x 5)(30 x 1)$ but add to $7 \rightarrow 10 \times 3$ work$$
(x+10)(x \text { ? }) \quad \text { need }+7 \ldots \quad \text { Answer: } \quad(x+10)(x-3)
$$

c) $x^{2}-4 x-21$
need 2 \#'s that multiply to $21(21 \times 1)(7 \times 3)$ but add to $4 \rightarrow 7 \times 3$ work
$(x-7)(x$? $)$ need $-4 \ldots \quad$ Answer: $(x-7)(x+3)$
d) $x^{2}-x-600$

Let's try the square technique again ...
e) $x^{2}+x-1332$
need $2 \#$'s that multiply to $1332 \sqrt{1332}=36.4966 \ldots . I$ bet the numbers are 36 and
$(x+37)(x$? $)$ need $+1 \ldots . \quad$ Answer: $(x+37)(x-36)$

What if there are extra variables???

Procedure is the same

f) $x^{2}-2 x y-195 y^{2}$

Just place x 's at the front and y's at the back and them concentrate on the \#'s

$$
\begin{aligned}
& (x-? y)(x+? y) \\
& \\
& \quad \begin{array}{l}
\text { need } 2 \text { \#'s that multiply to } 195 \text { but differ by } 2 \sqrt{195}=13.95 \\
\\
\quad \text { maybe } 13 \times 15, \text { or } 14 \times 16, \text { or } 12 \times 14 \text { might work ??? } 15 \times 13=195
\end{array}
\end{aligned}
$$

$$
(x-15 y)(x+? y) \text { need }-2
$$

Answer: $\quad(x-15 y)(x+13 y)$
g) $x^{2}+12 x y+35 y^{2}$

$$
(x+? y)(x+? y) \quad 7 \times 5=35 \ldots \quad(x+7)(x+? y) \text { need } 12
$$

Answer: $\quad(x+7 y)(x+5 y)$
h) $x^{2} y^{2}+3 x y-28$
x's and y's in first term ... (xy + ?)(xy + ?) $7 \times 4=28$...
$(x y+7)(x y+?) \quad$ need 3
Answer: $\quad(x y+7)(x y-4)$
Silly one ...
i) $x^{4} y^{2}-x^{2} y z^{4} p^{2}-12 z^{8} p^{4}$

Variables first: $\quad\left(x^{2} y-? z^{4} p^{2}\right)\left(x^{2} y-? z^{4} p^{2}\right) \quad 4 \times 3=12$
$\left(x^{2} y-4 z^{4} p^{2}\right)\left(x^{2} y-? z^{4} p^{2}\right) \quad$ need $-1 \quad$ Answer: $\quad\left(x^{2} y-4 z^{4} p^{2}\right)\left(x^{2} y+3 z^{4} p^{2}\right)$
2) What numbers can be placed in the box so that following will factor
a) $x^{2}+\square x+18$
its +18 so both \#'s + or both \#'s - $(6 \times 3)(9 \times 2)(18 \times 1)$ Answer: $\pm 9, \pm 11, \pm 19$
a) $\quad x^{2}+\square x-24$
its -24 so 1 \# = + the other $-(6 \times 4)(8 \times 3)(24 \times 1)(12 \times 2)$
Answer: $\quad \pm 2, \pm 5, \pm 23, \pm 10$
Not every trinomial will factor ... $x^{2}+4 x+7$ but, we will focus on trinomials that do!

Factoring $x^{2}+b x+c$
Did you hear about ...

A	B	C	D	ANSWERS	
				$\left(\frac{8}{6}+3\right)\left(\begin{array}{l}\text { c }\end{array}\right.$	$(x-18)(x+1)$
				STARTED	WANTED
E	F	G	H	$(2+6)(t-1)$	$(x+9 y)(x-4 y)$
				WHO	KIT
1	J	K	L	$(t+6)(t-2)$	$(x-18 y)(x+2 y)$
				RED	BAND
				$(t+5)(t-2)$	$(x-12 y)(x+3 y)$
M	N	0	P ?	THE	AID
				($\mathrm{t}-9)(\mathrm{t}+8)$.	$(x+5 y)(x-3 y)$
A	$t^{2}+3 t-10$	B		BECAUSE	A
			$t^{2}+4 t-21$	(t-4)(t+2)	$(x+8)(x-3)$
				JOINED	-o
				$(t-4)(t+5)$	$(x+6)(x-4)$
				ARMY	HELP
C	$t^{2}+5 t-6$	D	$t^{2}-2 t-8$	(b-10)(z+2)	$(x+6)(x-3)$
				CROSS	$1 T$
				$(\hat{c}+7)\left(\begin{array}{l}\text { e }\end{array}\right.$	$(x-25 y)(x+2 y)$
				CAT	LION
E	$t^{2}-10 t-11$	F	$t^{2}+4 t-12$	$(\mathrm{r}+4)(\mathrm{s}-3)$	$(x-12)(x+2)$
				AFTER	BE
				$(\mathrm{t}-11)(\mathrm{c}+1)$	$(x-10 y)(x+5 y)$
				THE	FIRST
G	$t^{2}-8 t-20$	H	$t^{2}-t-72$	I $x^{2}+3 x-18$	
J	$x^{2}-17 x-18$	K	$x^{2}+5 x-24$	$L \quad x^{2}-10 x-24$	
M	$x^{2}+2 x y-15 y^{2}$	N	$x^{2}-5 x y-50 y^{2}$	$0 \quad x^{2}-9 x y-36 y^{2}$	
		P	$x^{2}+5 x y-36 y^{2}$		

When is the Wrestler "King of the Ring?"

4
$n^{2}-11 n+28$
$5 \quad n^{2}+2 n-15$
$6 \quad n^{2}-5 n-24$
$8 t^{2}+10 t+16$
$11 t^{2}-7 t-30$
$14 \quad t^{2}+8 t-48$
$13 t^{2}+14 t+48$

$$
14 \text { ltol-40 }
$$

$10 \quad t^{2}+8 t-9$
$12 t^{2}-t-30$
$13+t^{2}+14 t+48$

16

$$
a^{2}-4 a b-21 b^{2}
$$

$17 a^{2}+6 a b-7 b^{2}$
$18 a^{2}-14 a b-32 b^{2}$
$19 a^{2}-29 a b+100 b^{2}$
$a^{2}+7 a b-18 b^{2}$
$21 a^{2}+2 a b+b^{2}$

Answers:

(L) $(n+2)(n+6)$	(1) $(8+8)(8+2)$
(1) $(m+5)(m-3)$	(1-) $(8-4)(8+12)$
(10) $(n+5)(n+1)$	(5) $(8+9)($ (-1$)$
(5) $(m-3)(m-4)$	(A) $(8-24)(8+2)$
(B) $(n-1)(n+15)$	(1) $(a-80)(a+4.6)$
(5) $(n+8)(n-7)$	(1-) $(a+7 b)(a-b)$
(1) $(n+2)(n+5)$	(A) $(a-20 b)(a+50)$
(E) $(n-8)(n+3)$	(E) $(a+2 b)(a+3 b)$
® $(n-12)(n-2)$	(10) $(a+9 b)(a-2 b)$
(1) $(n-7)(n-4)$	(T) $(a-7 b)(a+3 b)$
(1) $(8-6)(8+5)$	(0) $(a-25 b)(a-4 b)$
(V) $(8-25)(\hat{i}+2)$	(5) $(a+6 b)(a+3 b)$
(1) $(8-5)(8-10)$	(A) $(a+b)(a+b)$
(1) $(8+6)(8+8)$	(B) $(a-16 b)(a+2 b)$
(0) $(8-10)(8+3)$	
(B) $(\hat{t}+15)(t-2)$	

