Recall Greatest Common Factor

$$
180=18 \times 10
$$

$$
240=24 \times 10
$$

$$
=3 \times 2 \times 2 \times 2 \times 2 \times 5
$$

$$
\begin{aligned}
G C F & =3 \times 2 \times 2 \times 5 \\
& =60
\end{aligned}
$$

What about $9 x^{2} y^{4}$ and $18 x y^{7}$?
Each have a 9, at least $1 x$ and at least 4 y's

$$
G C F=9 x y^{4}
$$

Factoring a GCF

This is always the first step in simplifying - we are taking out the common factor and returning the expression to its bracket form (reverse of dive-bombing)

Basic question: What was the question originally?

1) Factor the following

a) $x^{2}-5 x$
both terms have ax

$$
=x(x-5)
$$

b) $3 x-30$
both terms have a 3

$$
=3(x-10)
$$

And we also have to consider variables and coefficients at the same time
c) $16 x^{2}-24 x$
both terms have a 8 and x

$$
=8 x(2 x-3)
$$

e) $13 x^{2}+39 x-26$
all terms have a 13

$$
=13\left(x^{2}+3 x-2\right)
$$

d) $7 x^{3}-14 x^{2}$
both terms have a 7 and x^{2}

$$
=7 x^{2}(x-2)
$$

f) $54 x^{3}+6 x^{2}$
both terms have a 6 and x^{2}

Notice the 1!
g) $18 x^{3} y^{7}-3 x^{2} y^{10}$
both terms have a 3 and x^{2} and $y 7$

$$
=3 x^{2} y^{7}\left(6 x-y^{3}\right)
$$

h) $\quad 96 x^{3} y^{2} z^{2}-18 x y^{2} z^{5}-36 x^{2} y^{2} z^{6}$
all terms have a $6, x, y^{2}, z^{2}$

$$
=6 x y^{2} z^{2}\left(16 x^{2}-3 z^{3}-6 x z^{4}\right)
$$

GCFs can be binomials too
i) $8 x(4 x-5)-7(4 x-5)$
both terms have a $(4 x-5) \quad=(4 x-5)(8 x-7)$
j) $6 x^{2}(2 x-y)-(2 x-y)$
both terms have a $(2 x-y)$

$$
=(2 x-y)\left(6 x^{2}-1\right)
$$

k) $\quad(3-x) x^{2}+(3-x) 9$
both terms have a $(3-x)$

$$
=(3-x)\left(x^{2}+9\right)
$$

Factoring and GCFs

Where do tadpoles in the Pawn shop come from?

4	10	2	8	1	9	13	7	11	14	6	15	12	3	5
1)	$3 x^{2}+18 x+9$				2)	$2 x^{2}+10 x+12$						3)	$7 x^{2}+14 x+35$	
4)	$5 x^{2}-20 x+10$				5)	$6 x^{2}+9 x-21$						6)	$n^{3}+n^{2}+n$	
7)	$n^{4}-n^{3}+n^{2}$				8)	$2 n^{3}-n^{2}-5 n$						9)	$3 n^{2}+9 n$	
10)	$7 n^{2}-28 n$				11)	4k ${ }^{3}-32 k$						12)	$6 k^{3}+10 k^{2}$	

13) $5 k^{3}+15 k^{2}+10 k$
14) $4 k^{3}-20 k^{2}+4$
15) $4 k^{3}-32 k$
16) $6 k^{3}+10 k^{2}$
17) $4 k^{4}+18 k^{3}-6 k^{2}$

Answers:
(D) $3\left(2 x^{2}+3 x-7\right)$
(L) $3\left(2 x^{2}+4 x-5\right)$
(A) $3\left(x^{2}+6 x+3\right)$
(P) $5\left(x^{2}-2 x+5\right)$
(F) $5\left(x^{2}-4 x+2\right)$
(O) $2\left(x^{2}+5 x+6\right)$
(B) $7\left(x^{2}+x+6\right)$
(E) $7\left(x^{2}+2 x+5\right)$

Answers:
(S) $n\left(2 n^{2}-2 n-6\right)$
(O) $n^{2}\left(n^{2}-n+1\right)$
(1) $7 n(n+5)$
(F) $3 n(n+3)$
(E) $n^{2}\left(n^{2}-2 n+3\right)$
(A) $n\left(n^{2}+n+1\right)$
(M) $n\left(2 n^{2}-n-5\right)$
(R) $7 n(n-4)$

Answers:
(P) $4 k\left(k^{3}-5 k^{2}+1\right)$
(R) $5 k\left(k^{2}+3 k+2\right)$
(S) $4\left(k^{3}-8 k^{2}+2\right)$
(G. $4 k\left(k^{2}-8\right)$
(L) $5 k\left(k^{2}+4 k+1\right)$
(W) $2 k^{2}\left(2 k^{2}+9 k-3\right)$
(T) $2 k^{2}(3 k-9)$
(N) $2 k^{2}(3 k+5)$

1. What do you get when you cross a chicken with a centipede?

$$
\overline{5} \overline{8} \overline{11} \overline{14} \overline{12} \overline{2} \overline{14} \overline{1} \overline{10} \overline{13} \overline{11} \overline{6} \overline{7} \overline{4} \overline{13}
$$

2. What do you get when you cross a mink with an octopus?

$$
\overline{12} \overline{7} \overline{3} \overline{12} \overline{11} \overline{3} \overline{9} \overline{12} \overline{14} \overline{10} \overline{13}
$$

1) $6 x^{2}+9 x+27$
2) $14 x^{3}-7 x^{2}-35 x$
3) $5 x^{3}+30 x^{2}-15 x$
4) $25 x^{3}-40 x^{2}+10 x$
(E) $4 x^{2}\left(x^{2}+5 x+3\right)$
(H) $6 a b^{2}\left(4 b^{2}-3 b-2\right)$
(L) $3\left(x^{4}+6 x^{2}+11\right)$
(X) $2\left(a^{2}+6 a b+3 b^{2}\right)$
() $7 x\left(2 x^{2}-x-5\right)$
(S) $7 a b\left(b^{4}-8\right)$
(1) $3\left(2 x^{2}+3 x+9\right)$
(M) $3 a b^{2}(a+5 b)$
(C) $7 x\left(7 x^{3}-2 x^{2}-4\right)$
(B) $6 a b^{2}\left(4 b^{2}+2 b-3\right)$
(K) $5 x\left(5 x^{2}-8 x+2\right)$
(N) $4 a^{2} b^{2}\left(2 a^{2} b^{2}-9 a b+2\right)$
(B) $7 x\left(7 x^{3}+2 x^{2}-3\right)$
(A) $2 a^{2} b\left(3 a^{2}-5 a b-3 b^{2}\right)$
(D) $5 x\left(x^{2}+6 x-3\right)$
(F) $6 a\left(a^{2}-3 b\right)$
(I) $3\left(x^{4}+4 x^{2}-11\right)$
(T) $4 a^{2} b^{2}\left(2 a^{2} b^{2}-7 a b+1\right)$
5) $4 x^{4}+20 x^{3}+12 x^{2}$
6) $3 x^{4}+12 x^{2}-33$
7) $49 x^{4}-14 x^{3}-28 x$
8) $2 a^{2}+12 a b+6 b^{2}$
9) $6 a^{3}-18 a b$
10) $3 a^{2} b^{2}+15 a b^{3}$
11) $8 a^{4} b^{4}-28 a^{3} b^{3}+4 a^{2} b^{2}$
12) $7 a b^{5}-56 a b$
13) $6 a^{4} b-10 a^{3} b^{2}-6 a^{2} b^{3}$
14) $24 a b^{4}+12 a b^{3}-18 a b^{2}$

Did you hear about...

A	B	C	D	E
F	G	H	I	J
K	L	M	N	? ? ?

E $\quad\left(x^{2}+1\right) k+\left(x^{2}+1\right) 4$

G $\quad k^{2}(x+3)-7(x+3)$
H $\quad w^{2}(3 w-1)+(3 w-1)$

I $2 d\left(5-n^{2}\right)+\left(5-n^{2}\right) \quad J \quad 5 t^{2}(t+7)-(t+7)$
$L \quad(a-2 b) 3 a-(a-2 b) 5 b$ M $6 h\left(x^{3}-4\right)-\left(x^{3}-4\right)$

Page 156 \#16
a)
b)
c)
d)
e)
f)

