To compare numbers we often look at that their prime-factorizations
Factor? A number that divides evenly into a given number (the factors of 20 are 1, 2, 4, 5, 10, 20)

Prime-factorization? Breaks the number down into a product of the primes that create it (the prime-factorization of $20=2 \times 2 \times 5$)

Perfect square: A number is a perfect square if every prime factor can be matched as a pair Perfect cube: A number is a perfect cube if every prime factor can be matched as a triplet

Example: $\quad 144=2 \times 2 \times 2 \times 2 \times 3 \times 3 \quad$ All prime factors pair up $144=$ perfect square

However, our main focus is GCF and LCM

GCF (Greatest Common Factor) = the largest factor common between 2 or more \#'s
LCM (Lowest Common Multiple) = the smallest number that $\mathbf{2}$ or more numbers divide into

1) Find the GCF and LCM of: 72 and 27

$$
72=3 \times 3 \times 2 \times 2 \times 2 \quad 27=3 \times 3 \times 3
$$

GCF: both of the prime-factorizations contain two 3's Thus the GCF = 3×3 or 9

LCM:
"Colvin's Cookies" Mr. Colvin want you to bake him a batch of cookies ... the recipes are the prime-factorizations above. You only need enough to make either type of cookies. (But he won't tell you which one he wants until you get home)
The LCM represents the minimum amount you need to buy to make EITHER recipe.
You need at least three 2's and at least three 3's LCM $=3 \times 3 \times 3 \times 2 \times 2 \times 2$ or 216
2) Find the GCF and LCM of: 540 and 1125 and 45

540: $54 \times 10 \quad 540=3 \times 3 \times 3 \times 2 \times 2 \times 5$
1125: $25 \times 45 \quad 1125=5 \times 5 \times 3 \times 3 \times 5$
45: $9 \times 5 \quad 45=3 \times 3 \times 5$

GCF: everyone has a 5 and $3 \times 3 \quad G C F=3 \times 3 \times 5$ or 45
LCM: 3 recipes need 3-3's, 2-2's, 3-5's LCM = $3 \times 3 \times 3 \times 2 \times 2 \times 5 \times 5 \times 5$ or 13500
3) Find the GCF and LCM of:

65: 5×13
1014: 13×78
910: 10×91
273: 13×21
$65=5 \times 13$
$1014=13 \times 13 \times 3 \times 2$
$91=5 \times 2 \times 13 \times 7$
$273=13 \times 7 \times 3$

GCF: everyone has a 13 GCF = 13
LCM 4 recipes (come on Colvin ... pick a type of cookie already (ㅇ)) Need at least 2-13's, 1-5, 1-3, 1-2, 1 -7

$$
L C M=13 \times 13 \times 5 \times 3 \times 2 \times 7 \text { or } 35490
$$

4) Show that 46656 is both a perfect square and a perfect cube $46656=64 \times 729$ or $8 \times 8 \times 27 \times 27$

$$
46656=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3
$$

Perfect square:

all factors pair up
Perfect cube: $\quad 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$ all factors are triplets

LCM or GCF problem?

Two satellites are currently lined up over Earth.
Satellite 1 orbits every 66 days and Satellite 2 orbits every 99 days.
When the $\mathbf{2}$ satellites align again?

This is an LCM problem:

$$
66=2 \times 3 \times 11
$$

$$
99=3 \times 3 \times 11
$$

$$
\text { LCM }=2 \times 3 \times 3 \times 11 \quad \text { LCM = } 198 \text { days (when they will realign) }
$$

