Math 8<br>Integers - Factors, GCF \& LCM

## Factors

Express 28 as a product of two natural numbers.
$\Rightarrow 28=$ $\qquad$
$\Rightarrow 28=$ $\qquad$
$\Rightarrow 28=$ $\qquad$

We can also say 28 can be exactly divided by: $\qquad$

A FACTOR is a number that, when multiplied with another number, produces a given product.

Therefore, the factors of 28 are: $\qquad$
What are the factors for 36 ? $\qquad$

Divisibility Test:

1. A number is divisible by $\underline{2}$ if it's Last digit is $\qquad$

Example: $\qquad$
2. A number is divisible by $\underline{3}$ if the Sum of its digits is also divisible by $\qquad$ Example: $\qquad$
3. A number is divisible by $\underline{5}$ if its Last digit is either $\qquad$ or $\qquad$ .

Example: $\qquad$
4. A number is divisible by 10 if its Last digit is $\qquad$ .

Example: $\qquad$

# Math 8 Integers - Factors, GCF \& LCM 

## Multiples:

28 is a $\qquad$ of 4 and 7 .

The first few multiples of 4 are:

$$
\begin{aligned}
& \Rightarrow 4 \times 1=4 \\
& \Rightarrow 4 \times \ldots= \\
& \Rightarrow 4 \times \ldots= \\
& \Rightarrow 4 \times \ldots= \\
& \Rightarrow 4 \times \ldots=
\end{aligned}
$$

The first few multiples of 7 are:

$$
\Rightarrow 7 \times 1=7
$$

$$
\Rightarrow 7 \times \ldots=
$$

$\qquad$

$$
\Rightarrow 7 \times \quad=
$$

$\qquad$
$\Rightarrow 7 \times$ $\qquad$
$\qquad$
$\Rightarrow 7 \times$ $\qquad$
$\qquad$

$$
\begin{aligned}
& \text { Relationships of } 28=4 \times 7 \\
& \quad \Rightarrow 4 \text { is a } \\
& \Rightarrow 28 \text { is a } \\
& \Rightarrow 7 \text { is a } \\
& \Rightarrow 28 \text { is a }
\end{aligned}
$$

## Prime Factorization:

Consider the number 60 . It is a composite number as it can be written as a product of 2 or more other numbers ( $60=6 \times 10,2 \times 30,3 \times 20,4 \times 15$, etc.).

If we break down a composite number and its factors until there are no more factors, we end up with a number made only from prime numbers ( $60=2 \times 2$ $\times 3 \times 5$ )."
$\Rightarrow$ When a number is written as a Product of Prime Numbers we call this a Prime Factorization

Recall: Prime numbers are special numbers that have exactly two factors: 1 and the number itself (i.e. they are only divisible by 1 and themselves).

Common Prime \#'s: $\qquad$

Example: Using a factor tree determine the Prime Factors of the following numbers? Express your answer in exponential form.

24
90
120

## The Greatest Common Factor (GCF)

Let's find all the factors 18 and 24 as follows:
$\Rightarrow 18$ : $\qquad$
$\Rightarrow 24:$ $\qquad$

What are the common factors between 18 and 24? $\qquad$
What would be the greatest (i.e. biggest/largest) common factor? GCF $(18,24)$ $\qquad$
The Greatest Common Factor is the largest factor that is the same (i.e. common) between a set of numbers.

OR
The largest number that can be divided evenly into all the numbers.
This method can be tricky and take a lot of time. Alternatively, we can use Prime Factorization to help us find the GCF.

The GCF can be found by identifying $A L L$ the Prime Factors common between the set of numbers and multiplying them together.

Example: Find the Prime Factors for the following pairs of numbers using a factor tree, then find the GCF

$$
35
$$

42

The Prime Factors of 35 and 42 are:

$$
\begin{aligned}
& \Rightarrow 35: \\
& \Rightarrow 42: \\
& \Rightarrow \text { GCF }=
\end{aligned}
$$

60
96

The Prime Factors of 60 and 90 are:
$\Rightarrow 60$ : $\qquad$
$\Rightarrow 96$ : $\qquad$
$\Rightarrow$ GCF $=$ $\qquad$

Example: Find the Prime Factors for the following set of numbers using a factor tree, then find the GCF

36
54
72

The Prime Factors of 36,54 and 72 are:
$\Rightarrow 36$ : $\qquad$
$\Rightarrow 54:$ $\qquad$
$\Rightarrow 72$ : $\qquad$
$\Rightarrow$ GCF = $\qquad$

24
48
60

The Prime Factors of 24,48 and 60 are:
$\Rightarrow 24:$ $\qquad$
$\Rightarrow 48$ : $\qquad$
$\Rightarrow 60$ : $\qquad$
$\Rightarrow$ GCF = $\qquad$

Lesson 4 Lowest Common Multiple (LCM)
Let us consider the following multiples of 12 and 18 .
$\Rightarrow 12$ : $\qquad$
$\Rightarrow 18$ : $\qquad$

The common multiples between 12 and 18 include: $\qquad$
What is the lowest common multiple between 12 and 18? LCM $(12,18)=$ $\qquad$
The Lowest Common Multiple is the smallest number that is a multiple of each of the given numbers.

Again, this method can be tricky and take a lot of time. Alternatively, we can use Prime Factorization to help us find the LCM.

Example: Find the Prime Factors for 12 and 18
12
18

The Prime Factors of 12 and 18 are:
$\Rightarrow 12$ : $\qquad$ Exponential Form: $\qquad$
$\Rightarrow 18$ : $\qquad$ Exponential Form: $\qquad$

The LCM can be found by identifying $A L L$ the prime factors of each number in exponential form and then multiplying the highest powers for each of the prime factors.
$\Rightarrow$ Prime Factors: $\qquad$
$\Rightarrow$ GCG $=$ $\qquad$
$\qquad$

Example: Find the LCM between 30 and 42
30
42

Example: Find the LCM between 20, 35, and 45 .
20
35
45

Example: Find the LCM between 36, 48, and 60.

36
48
60

