Exponents

Just as multiplication involves repeated addition, there are instances where we encounter repeated multiplication.

Answer each of the multiplication:

$$
\begin{aligned}
& \Rightarrow(+2) \times(+2) \times(+2) \times(+2) \times(+2)= \\
& \Rightarrow(-4) \times(-4) \times(-4)=
\end{aligned}
$$

We can express this repeated multiplication by using what is called exponents.

Rewrite the following using exponent notation.

$$
\begin{aligned}
& \Rightarrow(+2) \times(+2) \times(+2) \times(+2) \times(+2)= \\
& \Rightarrow(-4) \times(-4) \times(-4)=
\end{aligned}
$$

\qquad

The number or variable that is being multiplied
repeatedly in the
expanded form

Write each of the exponents as repeated multiplication and determine the result.

$$
\begin{aligned}
& \Rightarrow 3^{3}= \\
& \Rightarrow(-1)^{5}=
\end{aligned}
$$

Just as with multiplication, if there is an odd exponent to a negative (-) base then the answer will be negative (-). If there is an even exponent to a negative (-) base then the answer will be positive (+).

Caveat! Be careful if the base is negative or if the expression is negative.
Example:

$$
\begin{aligned}
& \Rightarrow 2^{5}= \\
& \Rightarrow(-2)^{5}= \\
& \Rightarrow-2^{5}=
\end{aligned}
$$

Complete the following:
a) $6^{3}=$ \qquad b) $(-1)^{4}=$ \qquad c) $-3^{3}=$ \qquad
d) $-4^{2}=$ \qquad
e) $10^{4}=$ \qquad
f) $(-5)^{3}=$ \qquad

Order of Operations

Answer the following viral math problems:

$$
\begin{aligned}
& \Rightarrow 6 \div 2(1+2)= \\
& \Rightarrow 6^{2} \div 2(3)+4= \\
& \Rightarrow 9-6 \div 3+1=
\end{aligned}
$$

As you can see you all got different answers to the same questions, but why is this?

These questions illustrate the importance of having a consistent set of rules/steps to follow, so everyone can get the same answer.

We call these steps BEDMAS

Brackets
Exponents
Division
Multiplication
Addition
Subtraction

Brackets

Exponents
Division - Multiplication*
Addition - Subtraction*
*Treated Equally Solve Left-to-Right

In Math we refer to BEDMAS as the Order of Operations refers to the sequence in which mathematical operations should be performed within an expression. It ensures that everyone gets the same answer when solving a mathematical problem.

Math 8
 Integers - Exponents \& Order of Operations

Let's try our original questions again, but this time using our new rules!
Re-try the following viral math problems:

$$
\begin{aligned}
& \Rightarrow 6 \div 2(1+2)= \\
& \Rightarrow 6^{2} \div 2(3)+4= \\
& \Rightarrow 9-6 \div 3+1=
\end{aligned}
$$

Evaluate the following expressions:
a) $4+3 \times 2=$ \qquad b) $8-(5 \times 2)+4=$ \qquad
c) $5+(-3) \times 4-2=$ \qquad
d) $(-10) \div 2+3 \times(4-1)=$ \qquad
e) $2 \times(3+5)-(-4)=$ \qquad
f) $12-3 \times(6 \div 2)^{2}=$ \qquad
g) $(7-2) \times 3+4^{2}=$ \qquad
h) $18 \div(4-1)^{2}+5=$ \qquad

Understanding and applying the order of operations correctly is fundamental in mathematics. It ensures clarity and consistency in mathematical expressions and calculations. YOU MUST MASTER THIS SKILL!

