

Exponents

Just as multiplication involves repeated addition, there are instances where we encounter repeated multiplication.

Answer each of the multiplication:

$$\implies (+2) \times (+2) \times (+2) \times (+2) \times (+2) = ____$$

 \Rightarrow (-4) × (-4) × (-4) = ____

We can express this repeated multiplication by using what is called *exponents*.

Rewrite the following using exponent notation.

$$\Rightarrow (+2) \times (+2) \times (+2) \times (+2) \times (+2) = ____$$
$$\Rightarrow (-4) \times (-4) \times (-4) = _____$$

Write each of the exponents as repeated multiplication and determine the result.

$$\Rightarrow 3^3 = ___= = __=$$

Just as with multiplication, if there is an *odd* exponent to a negative (-) base then the answer will be *negative* (-). If there is an *even* exponent to a negative (-) base then the answer will be *positive* (+).

Caveat! Be careful if the base is negative or if the expression is negative.

Example:

Complete the following:

a) $6^3 =$ ____ b) $(-1)^4 =$ ____ c) $-3^3 =$ ____ d) $-4^2 =$ ____ e) $10^4 =$ ____ f) $(-5)^3 =$ ____

Order of Operations

Answer the following viral math problems:

\Rightarrow 6 ÷ 2(1 + 2) =
$\Rightarrow 6^2 \div 2(3) + 4 = $
⇒9-6÷3+1=

As you can see you all got different answers to the same questions, but why is this?

These questions illustrate the importance of having a consistent set of rules/steps to follow, so everyone can get the same answer.

We call these steps **BEDMAS**

Brackets	Brackets
Exponents	Exponents
Division	Division – Multiplication*
Multiplication	Addition – Subtraction*
Addition	*Treated Equally Solve Left-to-Right
Subtraction	

In Math we refer to BEDMAS as the *Order of Operations* refers to the sequence in which mathematical operations should be performed within an expression. It ensures that everyone gets the same answer when solving a mathematical problem.

Understanding and applying the order of operations correctly is fundamental in mathematics. It ensures clarity and consistency in mathematical expressions and calculations. YOU MUST MASTER THIS SKILL!

Math 8 Integers – Exponents & Order of Operations

Let's try our original questions again, but this time using our new rules!

Re-try the following viral math problems:

⇒ 6 ÷ 2(1 + 2) =	
$\Rightarrow 6^2 \div 2(3) + 4 = $	
⇒9-6÷3+1=	

Evaluate the following expressions:

- a) 4 + 3 × 2 = ____ b) 8 (5 × 2) + 4 = ____
- c) $5 + (-3) \times 4 2 =$ ____ d) $(-10) \div 2 + 3 \times (4 1) =$ ____

e) $2 \times (3 + 5) - (-4) =$ ____ f) $12 - 3 \times (6 \div 2)^2 =$ ____

g) $(7-2) \times 3 + 4^2 =$ ____ h) $18 \div (4-1)^2 + 5 =$ ____

