

Multiplying of Integers

Write each of the repeated additions as multiplication:

$$\implies (+2) + (+2) + (+2) + (+2) + (+2) = ____$$

 \Rightarrow (-6) + (-6) + (-6) = ____

Write each of the multiplications as a repeated addition.

 \Rightarrow (6) × (-3) = _____

Do these two methods mean the same thing? Is there a difference between these expressions and the previous ones? Let's Draw a picture!

Write each of the following array diagrams as a repeated addition and as a multiplication statement.

Ways of Showing Multiplication

- \Rightarrow (a × b) \rightarrow Cross-Product
- \Rightarrow (a b) \rightarrow Dot Product
- \Rightarrow (a)(b) \rightarrow Brackets
- \Rightarrow a(b) \rightarrow Coefficient

Tip: when writing negative numbers place the number and negative sign in brackets, to prevent any confusion.

Example: 4 -3 or (4) -3 or (4)(-3) etc....

Complete the following:

a) $(+4) \times (+6) =$ ____ b) $(-1) \times (+2) =$ ____ c) $(-2) \times (-3) =$ ____

d)
$$4 \cdot 5 \cdot (-1) = ___ e) (10)(-2)(-1) = ___ f) (-4) \cdot (-3) \times (2) = ___$$

Dividing of Integers

Division undoes multiplication. With division, we take a collection of items and divide them amongst certain number groups and we determine how many items are in each group.

Example: write $4 \times 3 = 12$ as a division statement

Ways of Showing Division

 $\Rightarrow (a \ \mathbf{F} b) \Rightarrow \text{Long Division (Vinculum Notation)}$ $\Rightarrow (a \div b) \Rightarrow \text{Obelus Sign}$ $\Rightarrow (a \neq b) \Rightarrow \text{Fraction Notation}$

Complete the following:

a)
$$(-12) \div (-3) =$$
 ____ b) $(-976) \div (8) =$ ___ c) $(0) \div (576) =$ ____

d)
$$(-20) \neq (-5) =$$
 e) $(16) \neq (4) =$ **f)** $(-4) \neq (0) =$ ____

Sign Rule (Multiplying & Dividing ONLY)

If a and b are natural numbers then,

In general, if there is an *odd* number of negative (-) signs then the answer will be *negative* (-). If there is an *even* number of negative (-) signs then the answer will be *positive* (+).

"