Multiplying of Integers

Write each of the repeated additions as multiplication:

$$
\begin{aligned}
& \Rightarrow(+2)+(+2)+(+2)+(+2)+(+2)= \\
& \Rightarrow(-6)+(-6)+(-6)=
\end{aligned}
$$

Write each of the multiplications as a repeated addition.

$$
\begin{aligned}
& \Rightarrow(+2) \times(+5)= \\
& \Rightarrow(6) \times(-3)=
\end{aligned}
$$

Do these two methods mean the same thing? Is there a difference between these expressions and the previous ones? Let's Draw a picture!

Write each of the following array diagrams as a repeated addition and as a multiplication statement.

Ways of Showing Multiplication

$$
\begin{aligned}
& \Rightarrow(a \times b) \rightarrow \text { Cross-Product } \\
& \Rightarrow(a \cdot b) \rightarrow \text { Dot Product } \\
& \Rightarrow(a)(b) \rightarrow \text { Brackets } \\
& \Rightarrow a(b) \rightarrow \text { Coefficient }
\end{aligned}
$$

Tip: when writing negative numbers place the number and negative sign in brackets, to prevent any confusion.

Example: $4-3$ or (4) -3 or (4)(-3) etc....
Complete the following:
a) $(+4) \times(+6)=$ \qquad
b) $(-1) \times(+2)=$
c) $(-2) \times(-3)=$ \qquad
d) $4 \cdot 5 \cdot(-1)=$ \qquad
e) $(10)(-2)(-1)=$ \qquad
f) $(-4) \cdot(-3) \times(2)=$
\qquad

Dividing of Integers

Division undoes multiplication. With division, we take a collection of items and divide them amongst certain number groups and we determine how many items are in each group.

Example: write $4 \times 3=12$ as a division statement

Ways of Showing Division

$$
\begin{aligned}
& \Rightarrow(a\ulcorner b) \rightarrow \text { Long Division (Vinculum Notation) } \\
& \Rightarrow(a \div b) \rightarrow \text { Obelus Sign } \\
& \Rightarrow(a / b) \rightarrow \text { Fraction Notation }
\end{aligned}
$$

Complete the following:
a) $(-12) \div(-3)=$ \qquad
b) $(-976) \div(8)=$
c) $(0) \div(576)=$
d) $(-20) /(-5)=$ \qquad
e) $(16) /(4)=$ \qquad
f) $(-4) /(0)=$ \qquad

Sign Rule (Multiplying \& Dividing ONLY)

If a and b are natural numbers then,

$$
\begin{gathered}
a \times b= \\
(-a) \times(-b)= \\
a \times(-b)= \\
(-a) \times b=
\end{gathered}
$$

In general, if there is an odd number of negative $(-)$ signs then the answer will be negative (-). If there is an even number of negative $(-)$ signs then the answer will be positive ${ }^{+}$).

